Amazon EKS

User Guide

@ Amazon EKS

Amazon EKS User Guide

Amazon EKS: User Guide
Copyright © 2019 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon EKS User Guide

Table of Contents

What IS AMQAzon EKS? ...ttt ettt ettt e bt e ettt e et ea et ea s eneaeneaeneenenenennens 1
Amazon EKS Control Plane Archit@CTUIEc.iuiiuiiniii ettt enes 1

How Does AmAzon EKS WOKK? ...ttt et et et e e e e e e e e e ens 2
Getting Started with AMAzon EKS ...ttt ettt et et eae e et eaeeneeneneenaneennan 3
Getting Started WIith @RSCEL .oeniuniiiii ettt ettt ete et et et et eaerenerenannennas 3

[=] =To BT =T PPN 3

Create Your Amazon EKS Cluster and Worker NOdescouviuiiiiiiiiiiiiiii e 6

L Y =T o L PP PP 8

Getting Started With the COoNSOLEouiiii ettt ene e 8
AMaAzoN EKS Prer@qUISITOSviuiiiiiiiiiteit et ettt e e e e e e e e eneaeasasaeaaaanes 8

Step 1: Create Your AmMAzon EKS CLUSEENiuiiiiiiiiii et e e e e e e e eneanas 11

Step 2: Create @ kKubeconfig File ..o e e 13

Step 3: Launch and Configure Amazon EKS Worker NOAEScc.uveunviiiiiniiiniiieeiieeieeieeieaenes 14

L Y =T o L PP PP PTPOS 18

(@1 1= L PSPPSRSO P PP PP PPPPPPPI 20
Creating @ CLUSTOI «ounieie ittt et et et et s e et s et e et s e et s e an s e ea s e easanennnanns 20
Updating Kubernetes VErsiono.oiuiiiiiiiie ettt ettt e e e e 26

(@ T =T gl =g o o To] o | A AVl ol TS PPN 35
Modifying Cluster ENAPOINt ACCESSuivniiniiiiiieie et eie et et et etie et s et e et eanneeneaneeanaaannns 35

Accessing the API Server from within the VPC ..o 37

CoNtrol Plane LOGQGINgcuueuniiniiiiiieiei ettt et et et ettt e et et et e e et et et e e et et aaaeaaeaneaneaneans 38
Enabling and Disabling Control Plane LOgSc.uiuuiuniiniiiiieiiieieiei ettt et et e eeeeeanes 39

Viewing Cluster Control Plane LOGScuuiuiuiuiiiiiiieie ettt st ee e ee e e e e ees 40

DELEtiNg @ CLUSTON . euiniiiiie it et e et et e et et et e e et e e et e e e e e e e e e e ens 41
KUDEINELES VEISIONS «..eeiiiiiiiieiei ettt ettt ettt ettt et et et et et ea et eaennennannenerennannennas 43
Available Amazon EKS Kubernetes Versionscccooviiiiiiiiiiiniinieie et ee e enes 43

T o T=T g 1= i It S OO P PSP OPR PR PPPPPPPPPR 44

Amazon EKS Version DePreCationcc. ittt e e e e e e e e e e e e aeaeaaas 44

PLAtfOIM VEBISIONS ..eeniiiniiieiie ettt ettt et et e et et e et et et e et e et s et e et e et e e e e eansaaneatneanneannennenns 45
KUDEINEtES VEISION .13 L.ttt ettt et e et et et et et e e e e e e et s e e e e eneennen 45
KUDEINEtES VEISION .72 L.oeiiiiiiiiiii ettt ettt e et e e et et et et e e e e e e et e e e e e eneennes 46
KUDEINEtes VEISION T.T7T L.ieiiiiiiiiti ittt ettt et et et et et e e et e e e e e e e e e eneennen 47
KUDErNetes VErsioN T.T0iuiiuiiiiiiiiii ittt et et e et e e et et et et e e e e e e e e e e e e seneennen 47

WOTKEE INOGESenieieeie ittt ettt et e et e e et et et et et e e et s e et e e e e st aa e e aa s aneeaeenanananseneennan 50
Amazon EKS-Optimized AMI ... et e e et e et et e e e e 50
Amazon EKS-Optimized AMI BUild SCHPES .uovinieiiieie e e ans 53

Amazon EKS-Optimized AMI with GPU SUPPOIt ...c.iviiiiiiieie e e e aens 53

Partner AMIS Lo et ettt aas 57
Launching Amazon EKS WOorker NOGEScuiiuiiniiniiiiiiei ettt e e e e e e eens 57
WOrKer NOAE UPAAtesvnieiiiiiiiii ittt e et e et et et et e e e et e eae e aneaenaaanssnenannen 64
Migrating to @ New Worker NOAE GIrOUPeuiuriuiiniiieiireei et s et e et s e e e enenes 64

Updating an Existing Worker NOe GrOUPc.ueuniuiiiiiiiieieie ettt e et e e e ennes 69

SEONAGE CLASSES ..eniiniiitin ettt ettt ettt ettt et et e e et et et et et st et e e et et ettt e et et e e e e e aaes 74
Load Balancing @nd INQIeSSeuieuiiuiieieiei ettt et ettt et et et et et et et e e et e e e e s e et e e e e e e eenen 76
o T el 21 [[l [o s R PP P PO P PRSP UPTPPPPPPPINt 76
Subnet Tagging for Load BalanCersviuuiiuiiiiiireieii et e e et e et et e e e e eaeeieeeneaaneenns 76

ALB Ingress Controller on AmAazon EKSouiiiiiiiiiie ettt ettt aeans 77
INEEWOIKING .o eeneieie ettt ettt et e et et e e et et et et et et et e e et e e e e eaa et eaneaaeaneaaennennannns 80
Creating @ VPC for AMAzon EKSiu ittt et et e e et et e e e e e s et s eaneeaneaaeannees 80

L Y =T o L PP PP PTPOS 82

Cluster VPC CONSIAEIAtIONSvuiuiiiiititie ittt ettt et et et e et e e et et e e e e et et e e e e e e e e eeneeneaneens 82

VPC TP AAIrESSING «oeneuninniiiiiieiei ettt ettt ettt e et et et et et et eae et etaetaesnetnenaenneaesneanennennns 83

VPC Tagging ReqUIrEMENT ..c..eeiiiiiiii ettt et e e e eaaes 83

Subnet Tagging ReQUIFEMENTcuiuiiie ettt et et e e e ees 83

Amazon EKS User Guide

Cluster Security Group CONSIAErationsceuuiiuiiiiiieei et e et eea e eeaeeeneenns 84

PO NEEWOIKING .ovniiiiiiiie ittt e et e e e e et e ee et s eteen s et e et s et e ansane et senesasaneansanns 86

CNI Configuration Vari@blesoouviiiriiiiiie ettt e e e e ee e e ete et e ete et e et aaeeteanannaes 88
INSEALliNG COMEDINS ...ttt et ettt et e et e et e et e et et et et e et e et e et e eaeen e eanaeaneennens 89
EXEEINAL SN AT ettt ettt ettt et ettt e et e et e et e eh e ea et et et et e ea e eh e en e e eaneeans 92

CNI CUSTOM NEEWOIKING «.euiiniiiii ittt e e e e e e e et e e e et e ete e e et e eneateeaeateaneaneaneanns 95

(@[o Yo - Te [T T PP P TP TP PRPPION 98
Installing Calico 0N AMAzon EKS i ettt et e e e e e ea e 98
SEArS POLICY DEIMO uuiiniiniiiiiie ettt et et et et et et et e et et et et et et et tastaaastesesesseesnsnnesnees 99

Managing Cluster AUthentiCationc.ciii i e e e et et et eae et ean et aanaans 105
[[e P Y Y =Yoo AU 105
INstalling aws—1am—aUuthentiCator cviiiiiiiii et e e e e e e e e e e e e aas 109
Create a kubeconfig for AMazon EKS ... e 112
Managing Users or 1AM Roles for YoUr CLUSTENc.uiiuiiiiii it ea e 116

1Y &7 o R PP PP PP TT 120
INstalling or Upgrading @RSCEL ..cuuiiuiiuiiiiiieiieeie et et e et e et e et e et e et eeaeeneetneeaneeraeenaeeneannas 120

PO SECUITLY POLICY .ttt ettt et e e et e e et e et e et e et e et eeneeeneeeneennens 122
Amazon EKS Default Pod Security POLICYeuuiiniiiiiieiie e e 122
GUESE BOOK ..ottt ettt ettt ettt ettt et et ettt e b et e e e e et eaeeans 125
= TR =T V=T TP PR PPNt 129
PromMEtNEUS MELIICS ..enieiiii it ettt et et e et e et et e e e et et een et e et e eneeneenneens 131
VIieWing the RAW MELIICS ..ouiuiiiiiiiii ettt et e e e e e e e e e eaeeteete et e et et et ateaaaananneens 131
DeEPLoying PromMEthEUS ... cuieiiii et et e et et et e e e e et e e e e e e e e e 131
USING HELM ottt ettt et et e et et et et e et e et e et e et eea e ean e ean et eenaeeneannees 135
Tutorial: Deploy Kubernetes Dashboardciuiiiiiiiiiiiiiii e e e e e e e e e e e ans 138
PrEIEQUISITES «.nenieiniie ittt ettt e e et e e et et et e et ea et e e et et e et et eeae e en e 139

Step 1: Deploy the Dashboardc.iuiiiiiiiiiii e e e e e e e e e eae e e eaeeaeannas 140

Step 2: Create an eks-admin Service Account and Cluster Role Bindingcc.ccceeviiiiieiiiiinneinnenns. 141

Step 3: Connect to the DAshbOoardo.viuiiiiiiiiiiii et e e e e 142

Y =T IR A \ L)] =T o LS PP TTPP 143
Getting Started with App Mesh and KUDEINELEScvuiiiiiiiiiiiee e e 144
PrEIEQUISITES «.nenieieiiei ittt ettt et e e et et e et et e e e et ea et e e et et e e e e et e eae e en e 144

Step 1: Create YOUr SErvice MESHiuiiii ettt e e e eeneeanae 144

Step 2: Create YOoUr VIrtUal NOGEScuuiiiiii et e e e et e e e e et et et et et aaennaes 144

Step 3: Create YOUr VIirtUal ROULEIScuuiuniiiiiiii e et e e e et e et et e e e e eaneanaanaanaanns 145

Step 4: Create YOUEr ROULES ...ttt ettt ettt ettt ettt et e e eeaens 146

Step 5: Create YOour Virtual SEIrVICESeuu ittt et e e et e e e e eennae 146

Step 6: Updating Your Microservice Pod Specificationscceuvieiiiiiiiiiiiiiiiieee e, 147
Tutorial: Configure App Mesh Integration with Kubernetesooovviiiiiiiiiiiiiiiii e 149
PrEIEQUISITES «.nenitiniie ittt ettt et e et e et et et e et ea et e e et et e et e et e ea e enaaan 149

Step 1: Install the Controller and CUStOM RESOUICESivuiiniiniiiiiieiiieeie e e e e e aneeaanas 149

Step 2: Install the Sidecar INJECLONiu it e et e e e e e e e e eae e e eaens 150
.. 150

Step 3: Configure APP MESH ... iuii e a e aas 151
Create Kubernetes CUStOM RESOUICESc.uiuuiiuniiiiiii ittt et et e e ettt et et et eaneeanne 151

1S o [=Tor= Tl [1=l £ (o] o H PP 152

Step 4: Remove Integration Components (Optional)c.oeeuiiiiiiiiiiiiiiii e 153
Deploy @ Mesh CoNNECLEA SEIVICEcuniiuniiieie ettt ettt e e e et et e ea et e e e e eennes 153
PrEIEQUISITES «.eneniiieii ittt ettt e et e et e et e et et et e et e et e et en et anaans 153

Deploy @ Sample APPLICAtIONiiniiii e e aas 153

T Vo] o] L Ter= 4[] o HE PP PSP 155

Change ConfIGUIAtioniuiuiiiei et e e et et e e e e et et et et aaeeteseeteesaeananneens 155

REMOVE AP PLICAtION Luiiniitiiiii ettt et et e e e e e e e e e et e e e e e 156

Deep LearNinNg COMTAINENS ...uiuie ittt ettt ettt ettt et et et et et ea et en et an et anetanenetnensaasnettnesaeeneeneneens 157
SY=Tel1 11 4 PP P PP PRPPPPNt 158
Identity and AcCCesS MaNAgeMIENTiiniiii it et et et et et et et et et et eaneaaaneanaanaans 158
AUIBINCE <.ttt et et et et et et et e et e et e et e eh e tn e een e ean e eaeen e e eaneas 159

Amazon EKS User Guide

Authenticating With [dentitiesoooiiiiiiii e 159

Managing Access USING POLICIEScuuieniiniieii ettt e e e e 161

How Amazon EKS Works with TAM ... e 162
Identity-Based POLICY EXAMIPLES ...iuuiuniiniiiiiiiii ittt e e et e et e it et et et eaneaneaneanaanaens 164

SEIVICE TAM ROLE ...ttt ettt et et e et et et et e et e et e ea e ebeeneannas 167

WOrker NOAE TAM ROLE ...cuniieii ettt ettt et ettt e e et e et e et e en e e e e eannes 169

B 1o]0] o] (=1 y Yoo} i 5 T« TSRS PPON 171

Logging and MONITOIINGiuuiiniiiiiiii ettt et et et et e e e e et e e ean e e e e eaneaneeneaneaneaneanees 171
Compliance Validationueiieii e et e e et e a et e e e e e e e aas 171
RESILIEINCE ...ttt ettt ettt e e et et e e et et et ettt e ea e e e e eans 172
INFrastruCtUre SECUIILY .. ceuie ittt et et et et et e e e e et e ea e e eannees 172
Configuration and Vulnerability ANALYSiSiuuiiiiiiiiiiiiiiii e e e e e e aanas 173

(@ Lo T0Te | | 1 O PP PT PP PPN 174
Amazon EKS Information in CloUdTrail ... cc.ueuniiniiiiiieii et ettt eeaee 174
Understanding Amazon EKS Log File ENTIESccuuiiiniiiiiiieieie ettt e eeaes 175
RELALEA PrOJECES ..ovuiuiiiiiiiiiit e te ettt et ettt et et eete et e e e et e et et e et ea et et et aae et aneetasaeeseensenesneenesneenns 176
MANAGEMENT TOOLS . euiiiiiit ittt ettt ettt et et et et et et e e et e e et e e et e e eaneaneansaneaneaneenen 176

1] o { TP P TP TP TPPRPRUPRPRt 176

F\ ST = Y el @ =] =) o] PP 176
NEEWOIKING 1 eeitniiii ettt e et et et et et et et et et et et et aanetnetnesnsanssnannsensnneeneeneens 176
Amazon VPC CNI plugin for KUbernetescooiiiiiiiiiiiiii e 176

AWS Application Load Balancer (ALB) Ingress Controller for Kubernetescccocviiniiiniennnes 176
EXEEINALDINS .ottt ettt et et ettt et et e ettt e e et et et et et e eheehaae 177

SY=TalT] 11 A A TP P PP PP 177

AWS TAM AULNENEICATON . eeiiii ittt et et et e et et een e eanae 177

) o] = o [I PP PPN 177
AMAZON EFS CSI DIIVEL «cuieniiiiiee ettt ettt ettt s e e e ens 177

[\ =Tl o1 T T T o 1 e PP 177
KUDBTLOW . ettt ettt e e e et e et e e e e e eaaees 177

FANEL o B Yo | L] e TP PPR PRIt 178
CLUSEEE AULOSCALEN ..eeeeteei ettt ettt et e et et e e et et et e ee e et e eneenns 178

ESCalatOr .ottt ettt e e e e e e e eans 178

[\ (o] a1 fo] o Ta [« IR PP PPOTPPPTPTRt 178
PrOMETREUS ...ttt et et et et et et e et et b e eb e eneen e eeneeanns 178
Continuous Integration / ContinUOUs DePLOYMENTtouiuiiiiiiiiriiie e e e e eie e e eanens 178
JENKINS X Lttt ettt et et et e e et e eb e e eeanae 178

B L o101 o] 1=1 s Ve Yo} i o T« TP 180
INSUTFICIENT CAPACITY . ivnitniiiiii ettt e et e e et et e e et e e e e eanaaneaneaneanaensanaenen 180
aws-iam-authenticator NOT FOUNMccooiiiiiiiii e e e e 180
Worker Nodes Fail 10 JOIN CLUSTENeuiiiiiiei e ettt et et e e e e e e e eanees 180
Unauthorized or Access Denied (KUDECLTL) .uuuuniiiiniiiiiiieeee ettt ee et e eeenenenenenenenes 180
hostname doesSn't MAatCh ciiii i ettt e e aas 181
getsockopt: NO FOULE T0O NSt ciiiiiiiiii et e s 181

(@[I o Yo T o =T 4 o] o T Koo | PRSPPI 181

1A T T T PP PP PP PSPRUPRTORt 182

Vel =1 D I=] o 1T=Ye | el T o 4 o] o H TP 182

I Am Not Authorized to Perform iam:PassROLEcouuiiiiiiiiiiiiiii e, 182

I Want t0 VIeW My ACCESS KEYS ...eniniininiiiieie et e et e et et e e e e et s e e e e eneanenaanan 183

I'm an Administrator and Want to Allow Others to Access Amazon EKSc..ccoveiiiiiiieennee. 183

| Want to Allow People Outside of My AWS Account to Access My Amazon EKS Resources 183

SEIVICE LIMITS cetennininii ittt et et ettt e ene e e et ea s et e ra e eneea s enenaseneneneees 185
DOCUMENT HiSTOY nuiiitiiie ettt ettt et et et et e e e et e et e ea et en s e aneaanesnaneneaneneaaannes 186
AWS GLOSSAIY .. eenetneeinetu ettt et et e et et et et e et e et e et e et e ta s e aa e et e et e eba e eb e eh e aa e an e e e ea e et e tneen e eaneans 191

Amazon EKS User Guide
Amazon EKS Control Plane Architecture

What Is Amazon EKS?

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to
run Kubernetes on AWS without needing to stand up or maintain your own Kubernetes control plane.
Kubernetes is an open-source system for automating the deployment, scaling, and management of
containerized applications.

Amazon EKS runs Kubernetes control plane instances across multiple Availability Zones to ensure high
availability. Amazon EKS automatically detects and replaces unhealthy control plane instances, and it
provides automated version upgrades and patching for them.

Amazon EKS is also integrated with many AWS services to provide scalability and security for your
applications, including the following:

« Amazon ECR for container images
« Elastic Load Balancing for load distribution
 |AM for authentication

« Amazon VPC for isolation

Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the
existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are
fully compatible with applications running on any standard Kubernetes environment, whether running
in on-premises data centers or public clouds. This means that you can easily migrate any standard
Kubernetes application to Amazon EKS without any code modification required.

Amazon EKS Control Plane Architecture

Amazon EKS runs a single tenant Kubernetes control plane for each cluster, and control plane
infrastructure is not shared across clusters or AWS accounts.

This control plane consists of at least two API server nodes and three etcd nodes that run across three
Availability Zones within a Region. Amazon EKS automatically detects and replaces unhealthy control
plane instances, restarting them across the Region as needed. Amazon EKS leverages the architecture of
AWS Regions in order to maintain high availability. Because of this, Amazon EKS is able to offer an SLA
for API server endpoint availability.

Amazon EKS uses Amazon VPC network policies to restrict traffic between control plane components to
within a single cluster. Control plane components for a cluster cannot view or receive communication
from other clusters or other AWS accounts, except as authorized with Kubernetes RBAC policies.

This secure and highly-available configuration makes Amazon EKS reliable and recommended for
production workloads.

https://aws.amazon.com/eks/sla
https://aws.amazon.com/eks/sla

Amazon EKS User Guide
How Does Amazon EKS Work?

How Does Amazon EKS Work?

NODES
MASTERS
- r g
% F
NODES
Provision an EKS cluster Deploy worker nodes
EKS automatically deploys Add worker nodes to your
Kubernetes masters EKS cluster

Getting started with Amazon EKS is easy:

1. First, create an Amazon EKS cluster in the AWS Management Console or with the AWS CLI or one of
the AWS SDKs.

2. Then, launch worker nodes that register with the Amazon EKS cluster. We provide you with an AWS
CloudFormation template that automatically configures your nodes.

3. When your cluster is ready, you can configure your favorite Kubernetes tools (such as kubectl) to
communicate with your cluster.

4. Deploy and manage applications on your Amazon EKS cluster the same way that you would with any
other Kubernetes environment.

For more information about creating your required resources and your first Amazon EKS cluster, see
Getting Started with Amazon EKS (p. 3).

Amazon EKS User Guide
Getting Started with eksctl

Getting Started with Amazon EKS

There are two getting started guides available for creating a new Kubernetes cluster with worker nodes
in Amazon EKS:

« Getting Started with eksct1l (p. 3): This getting started guide helps you to install all of the
required resources to get started with Amazon EKS using eksctl, a simple command line utility for
creating and managing Kubernetes clusters on Amazon EKS. At the end of this tutorial, you will have
a running Amazon EKS cluster with worker nodes, and the kubectl command line utility will be
configured to use your new cluster. This is the fastest and simplest way to get started with Amazon
EKS.

» Getting Started with the AWS Management Console (p. 8): This getting started guide helps you to
create all of the required resources to get started with Amazon EKS in the AWS Management Console.
In this guide, you manually create each resource in the Amazon EKS or AWS CloudFormation consoles,
and the workflow described here gives you complete visibility into how each resource is created and
how they interact with each other; however, this is a more complicated and time consuming way to get
started with Amazon EKS.

Getting Started with eksctl

This getting started guide helps you to install all of the required resources to get started with Amazon
EKS using eksctl, a simple command line utility for creating and managing Kubernetes clusters on
Amazon EKS. At the end of this tutorial, you will have a running Amazon EKS cluster with worker nodes,
and the kubectl command line utility will be configured to use your new cluster.

Prerequisites

This section helps you to install and configure the binaries you need to create and manage an Amazon
EKS cluster.

Install the Latest AWS CLI

To use kubectl with your Amazon EKS clusters, you must install a binary that can create the required
client security token for cluster API server communication. The aws eks get-token command, available in
version 1.16.156 or greater of the AWS CLI, supports client security token creation. To install or upgrade
the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User
Guide.

If you already have pip and a supported version of Python, you can install or upgrade the AWS CLI with
the following command:

pip install awscli --upgrade --user

Note

Your system's Python version must be 2.7.9 or greater. Otherwise, you receive hostname
doesn't match errors with AWS CLI calls to Amazon EKS. For more information, see What are
"hostname doesn't match" errors? in the Python Requests FAQ.

For more information about other methods of installing or upgrading the AWS CLI for your platform, see
the following topics in the AWS Command Line Interface User Guide.

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors

Amazon EKS User Guide
Prerequisites

« Install the AWS Command Line Interface on macOS
« Install the AWS Command Line Interface on Linux
« Install the AWS Command Line Interface on Microsoft Windows

If you are unable to install version 1.16.156 or greater of the AWS CLI on your system, you must ensure
that the AWS IAM Authenticator for Kubernetes is installed on your system. For more information, see
Installing aws-iam-authenticator (p. 109).

Configure Your AWS CLI Credentials

Both eksctl and the AWS CLI require that you have AWS credentials configured in your environment.
The aws configure command is the fastest way to set up your AWS CLI installation for general use.

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxXRf1CYEXAMPLEKEY
Default region name [None]: us-west-2

Default output format [None]: json

When you type this command, the AWS CLI prompts you for four pieces of information: access key,
secret access key, AWS Region, and output format. This information is stored in a profile (a collection of
settings) named default. This profile is used unless you specify another one.

For more information, see Configuring the AWS CLI in the AWS Command Line Interface User Guide.

Install eksctl

This section helps you to install the eksct1l command line utility. For more information, see the https://
eksctl.io/.

Choose the tab below that best represents your client setup.

macOS
To install or upgrade eksctl on macOS using Homebrew

The easiest way to get started with Amazon EKS and macOS is by installing eksct1 with Homebrew.
The eksctl Homebrew recipe installs eksctl and any other dependencies that are required for
Amazon EKS, such as kubectl and the aws-iam-authenticator.

1. If you do not already have Homebrew installed on macOS, install it with the following
command.

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

2. Install the Weaveworks Homebrew tap.

brew tap weaveworks/tap

3. Install or upgrade eksctl.

« Install eksctl with the following command:

brew install weaveworks/tap/eksctl

https://docs.aws.amazon.com/cli/latest/userguide/install-macos.html
https://docs.aws.amazon.com/cli/latest/userguide/install-linux.html
https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://github.com/weaveworks/eksctl
https://github.com/weaveworks/eksctl
https://brew.sh/

Amazon EKS User Guide
Prerequisites

o If eksctl is already installed, run the following command to upgrade:

brew upgrade eksctl && brew link --overwrite eksctl

4. Test that your installation was successful with the following command.

eksctl version

Note
The GitTag version should be at least 0. 1. 37. If not, check your terminal output for
any installation or upgrade errors.

Linux

To install or upgrade eksctl on Linux using curl

1. Download and extract the latest release of eksctl with the following command.

curl --silent --location "https://github.com/weaveworks/eksctl/releases/download/
latest_release/eksctl_$(uname -s)_amdé4.tar.gz" | tar xz -C /tmp

2. Move the extracted binary to /usr/local/bin.

sudo mv /tmp/eksctl /usr/local/bin

3. Test that your installation was successful with the following command.

eksctl version

Note
The GitTag version should be at least 0. 1. 37. If not, check your terminal output for
any installation or upgrade errors.

Windows

To install or upgrade eksctl on Windows using Chocolatey

1. If you do not already have Chocolatey installed on your Windows system, see Installing
Chocolatey.

2. Install or upgrade eksctl and the aws-iam-authenticator.

« Install the binaries with the following command:

chocolatey install -y eksctl aws-iam-authenticator

« If they are already installed, run the following command to upgrade:

chocolatey upgrade -y eksctl aws-iam-authenticator

3. Test that your installation was successful with the following command.

eksctl version

https://chocolatey.org/install
https://chocolatey.org/install

Amazon EKS User Guide
Create Your Amazon EKS Cluster and Worker Nodes

Note
The citTag version should be at least 0.1.37. If not, check your terminal output for
any installation or upgrade errors.

Install and Configure kubectl for Amazon EKS

Kubernetes uses the kubectl command-line utility for communicating with the cluster API server.

Note

If you used the preceding Homebrew instructions to install eksctl on macOS, then kubectl
and the aws-iam-authenticator have already been installed on your system. You can skip to
Create Your Amazon EKS Cluster and Worker Nodes (p. 6).

To install kubectl for Amazon EKS

« You have multiple options to download and install kubectl for your operating system.

« The kubectl binary is available in many operating system package managers, and this option is
often much easier than a manual download and install process. You can follow the instructions
for your specific operating system or package manager in the Kubernetes documentation to
install.

« Amazon EKS also vends kubectl binaries that you can use that are identical to the upstream
kubectl binaries with the same version. To install the Amazon EKS-vended binary for your
operating system, see Installing kubectl (p. 105).

Create Your Amazon EKS Cluster and Worker Nodes

Now you can create your Amazon EKS cluster and a worker node group with the eksctl command line
utility.

To create your cluster and worker nodes with eksctl

This procedure assumes that you have installed eksctl, and that your eksct1 version is at least
0.1.37. You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksctl, see Installing or Upgrading eksctl (p. 120).

1. Create your Amazon EKS cluster and worker nodes with the following command. Substitute the red
text with your own values.

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer
create new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes
version 1.10 will eventually be automatically updated to the latest available platform
version of Kubernetes version 1.11. For more information, see Amazon EKS Version
Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service
interruption. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

eksctl create cluster \

--name prod \

--version 1.13 \

--nodegroup-name standard-workers \
--node-type t3.medium \

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Amazon EKS User Guide
Create Your Amazon EKS Cluster and Worker Nodes

--nodes 3 \

--nodes-min 1 \
--nodes-max 4 \
--node-ami auto

Note
For more information on the available options for eksctl create cluster, see the project
README on GitHub or view the help page with the following command.

eksctl create cluster --help

Output:

[#] wusing region us-west-2

[#] setting availability zones to [us-west-2b us-west-2c us-west-2d]

[#] subnets for us-west-2b - public:192.168.0.0/19 private:192.168.96.0/19

[#] subnets for us-west-2c - public:192.168.32.0/19 private:192.168.128.0/19

[#] subnets for us-west-2d - public:192.168.64.0/19 private:192.168.160.0/19

[#] nodegroup "standard-workers" will use "ami-0923e4b35a30a5£f53" [AmazonLinux2/1.12]
[#] creating EKS cluster "prod" in "us-west-2" region

[#] will create 2 separate CloudFormation stacks for cluster itself and the initial
nodegroup

[#] if you encounter any issues, check CloudFormation console or try 'eksctl utils
describe-stacks --region=us-west-2 --name=prod’

[#] building cluster stack "eksctl-prod-cluster"

[#] creating nodegroup stack "eksctl-prod-nodegroup-standard-workers"

[#] all EKS cluster resource for "prod" had been created

[#] saved kubeconfig as "/Users/ericn/.kube/config"

[#] adding role "arn:aws:iam::111122223333:role/eksctl-prod-nodegroup-standard-wo-
NodeInstanceRole-IJP4S12W3020" to auth ConfigMap

[#] nodegroup "standard-workers" has 0 node(s)

[#] waiting for at least 1 node(s) to become ready in "standard-workers"

[#] nodegroup "standard-workers" has 2 node(s)

[#] node "ip-192-168-22-17.us-west-2.compute.internal" is not ready

[#] node "ip-192-168-32-184.us-west-2.compute.internal" is ready

[#] kubectl command should work with "/Users/ericn/.kube/config", try 'kubectl get
nodes'

[#] EKS cluster "prod" in "us-west-2" region is ready

Cluster provisioning usually takes between 10 and 15 minutes. When your cluster is ready, test that
your kubectl configuration is correct.

kubectl get svec

Note

If you receive the error "aws-iam-authenticator": executable file not found
in $PATH, your kubectl isn't configured for Amazon EKS. For more information, see
Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or Access
Denied (kubectl) (p. 180) in the troubleshooting section.

Output:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes ClusterIP 10.100.0.1 <none> 443 /TCP im

(GPU workers only) If you chose a P2 or P3 instance type and the Amazon EKS-optimized AMI with
GPU support, you must apply the NVIDIA device plugin for Kubernetes as a DaemonSet on your
cluster with the following command.

https://github.com/weaveworks/eksctl/blob/master/README.md
https://github.com/NVIDIA/k8s-device-plugin

Amazon EKS User Guide
Next Steps

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta/
nvidia-device-plugin.yml

Next Steps

Now that you have a working Amazon EKS cluster with worker nodes, you are ready to start installing
Kubernetes add-ons and deploying applications to your cluster. The following documentation topics help
you to extend the functionality of your cluster.

« Launch a Guest Book Application (p. 125) — Create a sample guest book application to test your
cluster.

 Tutorial: Deploy the Kubernetes Web Ul (Dashboard) (p. 138) — This tutorial guides you through
deploying the Kubernetes dashboard to your cluster.

« Using Helm with Amazon EKS (p. 135) — The helm package manager for Kubernetes helps you
install and manage applications on your cluster.

o Installing the Kubernetes Metrics Server (p. 129) — The Kubernetes metrics server is an aggregator
of resource usage data in your cluster.

« Control Plane Metrics with Prometheus (p. 131) — This topic helps you deploy Prometheus into your
cluster with helm.

Getting Started with the AWS Management
Console

This getting started guide helps you to create all of the required resources to get started with Amazon
EKS in the AWS Management Console. In this guide, you manually create each resource in the Amazon
EKS or AWS CloudFormation consoles, and the workflow described here gives you complete visibility into
how each resource is created and how they interact with each other.

For a simpler and more automated getting started experience, see Getting Started with
eksctl (p. 3).

Amazon EKS Prerequisites

Before you can create an Amazon EKS cluster, you must create an IAM role that Kubernetes can assume
to create AWS resources. For example, when a load balancer is created, Kubernetes assumes the role to

create an Elastic Load Balancing load balancer in your account. This only needs to be done one time and
can be used for multiple EKS clusters.

You must also create a VPC and a security group for your cluster to use. Although the VPC and security
groups can be used for multiple EKS clusters, we recommend that you use a separate VPC for each EKS
cluster to provide better network isolation.

This section also helps you to install the kubectl binary and configure it to work with Amazon EKS.

Create your Amazon EKS Service Role

To create your Amazon EKS service role in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Roles, then Create role.

https://github.com/kubernetes/dashboard
https://console.aws.amazon.com/iam/

Amazon EKS User Guide
Amazon EKS Prerequisites

3. Choose EKS from the list of services, then Allows Amazon EKS to manage your clusters on your
behalf for your use case, then Next: Permissions.

4. Choose Next: Tags.

5. (Optional) Add metadata to the role by attaching tags as key-value pairs. For more information
about using tags in 1AM, see Tagging IAM Entities in the IAM User Guide.

6. Choose Next: Review.

7. For Role name, enter a unique name for your role, such as eksServiceRole, then choose Create
role.

Create your Amazon EKS Cluster VPC

This section guides you through creating a VPC for your cluster with either 3 public subnets, or two
public subnets and two private subnets, which are provided with internet access through a NAT gateway.
We recommend a network architecture that uses private subnets for your worker nodes, and public
subnets for Kubernetes to create public load balancers within.

Choose the tab below that represents your desired VPC configuration.

Only public subnets

To create your cluster VPC with only public subnets

AR A B

11.

12.

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
From the navigation bar, select a Region that supports Amazon EKS.

Choose Create stack.

For Choose a template, select Specify an Amazon S3 template URL.

Paste the following URL into the text area and choose Next:

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
vpc-sample.yaml

On the Specify Details page, fill out the parameters accordingly, and then choose Next.

« Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you can
call it eks-vpc.

« VpcBlock: Choose a CIDR range for your VPC. You can keep the default value.

« Subnet01Block: Specify a CIDR range for subnet 1. We recommend that you keep the default
value so that you have plenty of IP addresses for pods to use.

« Subnet02Block: Specify a CIDR range for subnet 2. We recommend that you keep the default
value so that you have plenty of IP addresses for pods to use.

« Subnet03Block: Specify a CIDR range for subnet 3. We recommend that you keep the default
value so that you have plenty of IP addresses for pods to use.

(Optional) On the Options page, tag your stack resources. Choose Next.
On the Review page, choose Create.
When your stack is created, select it in the console and choose Outputs.

. Record the SecurityGroups value for the security group that was created. You need this

when you create your EKS cluster; this security group is applied to the cross-account elastic
network interfaces that are created in your subnets that allow the Amazon EKS control plane to
communicate with your worker nodes.

Record the Vpcld for the VPC that was created. You need this when you launch your worker
node group template.

Record the Subnetlds for the subnets that were created. You need this when you create your
EKS cluster; these are the subnets that your worker nodes are launched into.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://console.aws.amazon.com/cloudformation/

Amazon EKS User Guide
Amazon EKS Prerequisites

Public and private subnets

To create your cluster VPC with public and private subnets

vk wWwnN =

11.

12.

13.

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
From the navigation bar, select a Region that supports Amazon EKS.

Choose Create stack.

For Choose a template, select Specify an Amazon S3 template URL.

Paste the following URL into the text area and choose Next:

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
vpc-private-subnets.yaml

On the Specify Details page, fill out the parameters accordingly, and then choose Next.

« Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you can
call it eks-vpc.

« VpcBlock: Choose a CIDR range for your VPC. You can keep the default value.

o PublicSubnet01Block: Specify a CIDR range for public subnet 1. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

o PublicSubnet02Block: Specify a CIDR range for public subnet 2. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

« PrivateSubnet01Block: Specify a CIDR range for private subnet 1. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

« PrivateSubnet02Block: Specify a CIDR range for private subnet 2. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

(Optional) On the Options page, tag your stack resources. Choose Next.
On the Review page, choose Create.

When your stack is created, select it in the console and choose Outputs.

. Record the SecurityGroups value for the security group that was created. You need this

when you create your EKS cluster; this security group is applied to the cross-account elastic
network interfaces that are created in your subnets that allow the Amazon EKS control plane to
communicate with your worker nodes.

Record the Vpcld for the VPC that was created. You need this when you launch your worker
node group template.

Record the Subnetlds for the subnets that were created. You need this when you create your
EKS cluster; these are the subnets that your worker nodes are launched into.

Tag your private subnets so that Kubernetes knows that it can use them for internal load
balancers.

Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
b. Choose Subnets in the left navigation.

c. Select one of the private subnets for your Amazon EKS cluster's VPC (you can filter them
with the string PrivateSubnet), and choose the Tags tab, and then Add/Edit Tags.

d. Choose Create Tag and add the following key and value, and then choose Save.

Key Value
kubernetes.io/role/internal-elb 1

e. Repeat these substeps for each private subnet in your VPC.

10

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/vpc/

Amazon EKS User Guide
Step 1: Create Your Amazon EKS Cluster

Install and Configure kubectl for Amazon EKS

Kubernetes uses a command-Lline utility called kubectl for communicating with the cluster API server.

To install kubectl for Amazon EKS

« You have multiple options to download and install kubectl for your operating system.

e« The kubectl binary is available in many operating system package managers, and this option is
often much easier than a manual download and install process. You can follow the instructions
for your specific operating system or package manager in the Kubernetes documentation to
install.

« Amazon EKS also vends kubectl binaries that you can use that are identical to the upstream
kubectl binaries with the same version. To install the Amazon EKS-vended binary for your
operating system, see Installing kubect1 (p. 105).

Install the Latest AWS CLI

To use kubectl with your Amazon EKS clusters, you must install a binary that can create the required
client security token for cluster APl server communication. The aws eks get-token command, available in
version 1.16.156 or greater of the AWS CLI, supports client security token creation. To install or upgrade
the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User
Guide.

Important

Package managers such yum, apt-get, or Homebrew for macQOS are often behind several
versions of the AWS CLI. To ensure that you have the latest version, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

You can check your AWS CLI version with the following command:

aws --version

Note

Your system's Python version must be 2.7.9 or greater. Otherwise, you receive hostname
doesn't match errors with AWS CLI calls to Amazon EKS. For more information, see What are
"hostname doesn't match" errors? in the Python Requests FAQ.

If you are unable to install version 1.16.156 or greater of the AWS CLI on your system, you must ensure
that the AWS IAM Authenticator for Kubernetes is installed on your system. For more information, see
Installing aws-iam-authenticator (p. 109).

Step 1: Create Your Amazon EKS Cluster

Now you can create your Amazon EKS cluster.

Important

When an Amazon EKS cluster is created, the IAM entity (user or role) that creates the cluster is
added to the Kubernetes RBAC authorization table as the administrator (with system:master
permissions. Initially, only that IAM user can make calls to the Kubernetes API server using
kubectl. For more information, see Managing Users or IAM Roles for your Cluster (p. 116). If
you use the console to create the cluster, you must ensure that the same IAM user credentials
are in the AWS SDK credential chain when you are running kubectl commands on your cluster.
If you install and configure the AWS CLI, you can configure the IAM credentials for your user. If
the AWS CLI is configured properly for your user, then eksctl and the AWS IAM Authenticator

11

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
https://github.com/kubernetes-sigs/aws-iam-authenticator

Amazon EKS User Guide
Step 1: Create Your Amazon EKS Cluster

for Kubernetes can find those credentials as well. For more information, see Configuring the
AWS CLI in the AWS Command Line Interface User Guide.

To create your cluster with the console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
2. Choose Create cluster.

Note

If your IAM user does not have administrative privileges, you must explicitly add permissions
for that user to call the Amazon EKS API operations. For more information, see Amazon EKS
Identity-Based Policy Examples (p. 164).

3. On the Create cluster page, fill in the following fields and then choose Create:

« Cluster name: A unique name for your cluster.

« Kubernetes version: The version of Kubernetes to use for your cluster. By default, the latest
available version is selected.

« Role ARN: Select the IAM role that you created with Create your Amazon EKS Service
Role (p. 8).

« VPC: The VPC you created with Create your Amazon EKS Cluster VPC (p. 9). You can find the
name of your VPC in the drop-down list.

« Subnets: The Subnetlds values (comma-separated) from the AWS CloudFormation output that
you generated with Create your Amazon EKS Cluster VPC (p. 9). Specify all subnets that will
host resources for your cluster (such as private subnets for worker nodes and public subnets for
load balancers). By default, the available subnets in the VPC specified in the previous field are
preselected.

« Security Groups: The SecurityGroups value from the AWS CloudFormation output that
you generated with Create your Amazon EKS Cluster VPC (p. 9). This security group has
ControlPlaneSecurityGroup in the drop-down name.

Important

The worker node AWS CloudFormation template modifies the security group that you
specify here, so Amazon EKS strongly recommends that you use a dedicated security
group for each cluster control plane (one per cluster). If this security group is shared
with other resources, you might block or disrupt connections to those resources.

« Endpoint private access: Choose whether to enable or disable private access for your cluster's
Kubernetes API server endpoint. If you enable private access, Kubernetes API requests that
originate from within your cluster's VPC will use the private VPC endpoint. For more information,
see Amazon EKS Cluster Endpoint Access Control (p. 35).

« Endpoint public access: Choose whether to enable or disable public access for your cluster's
Kubernetes API server endpoint. If you disable public access, your cluster's Kubernetes API server
can only receive requests from within the cluster VPC. For more information, see Amazon EKS
Cluster Endpoint Access Control (p. 35).

« Logging - For each individual log type, choose whether the log type should be Enabled or
Disabled. By default, each log type is Disabled. For more information, see Amazon EKS Control
Plane Logging (p. 38)

Note

You might receive an error that one of the Availability Zones in your request doesn't have
sufficient capacity to create an Amazon EKS cluster. If this happens, the error output
contains the Availability Zones that can support a new cluster. Retry creating your cluster
with at least two subnets that are located in the supported Availability Zones for your
account. For more information, see Insufficient Capacity (p. 180).

4. On the Clusters page, choose the name of your newly created cluster to view the cluster
information.

12

https://github.com/kubernetes-sigs/aws-iam-authenticator
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://console.aws.amazon.com/eks/home#/clusters

Amazon EKS User Guide
Step 2: Create a kubeconfig File

5.

The Status field shows CREATING until the cluster provisioning process completes. Cluster
provisioning usually takes between 10 and 15 minutes.

Step 2: Create a kubeconfig File

In this section, you create a kubeconfig file for your cluster with the AWS CLI update-kubeconfig
command. If you do not want to install the AWS CLlI, or if you would prefer to create or update your
kubeconfig manually, see Create a kubeconfig for Amazon EKS (p. 112).

To create your kubeconfig file with the AWS CLI

1.

Ensure that you have at least version 1.16.156 of the AWS CLI installed. To install or upgrade the
AWS CLlI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User
Guide.

Note

Your system's Python version must be 2.7.9 or greater. Otherwise, you receive hostname
doesn't match errors with AWS CLI calls to Amazon EKS. For more information, see What
are "hostname doesn't match" errors? in the Python Requests FAQ.

You can check your AWS CLI version with the following command:

aws --version

Important

Package managers such yum, apt-get, or Homebrew for macOS are often behind several
versions of the AWS CLI. To ensure that you have the latest version, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

Use the AWS CLI update-kubeconfig command to create or update your kubeconfig for your cluster.

« By default, the resulting configuration file is created at the default kubeconfig path (. kube/
config) in your home directory or merged with an existing kubeconfig at that location. You can
specify another path with the --kubeconfig option.

 You can specify an IAM role ARN with the --role-arn option to use for authentication when you
issue kubectl commands. Otherwise, the IAM entity in your default AWS CLI or SDK credential
chain is used. You can view your default AWS CLI or SDK identity by running the aws sts get-
caller-identity command.

« For more information, see the help page with the aws eks update-kubeconfig help command or
see update-kubeconfig in the AWS CLI Command Reference.

aws eks --region region update-kubeconfig --name cluster_name

Test your configuration.

kubectl get svc

Note

If you receive the error "aws-iam-authenticator": executable file not found
in $PATH, your kubectl isn't configured for Amazon EKS. For more information, see
Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or Access
Denied (kubectl) (p. 180) in the troubleshooting section.

Output:

13

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/eks/update-kubeconfig.html

Amazon EKS User Guide
Step 3: Launch and Configure Amazon EKS Worker Nodes

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svce/kubernetes ClusterIP 10.100.0.1 <none> 443 /TCP im

Step 3: Launch and Configure Amazon EKS Worker
Nodes

Now that your VPC and Kubernetes control plane are created, you can launch and configure your worker
nodes.

Important
Amazon EKS worker nodes are standard Amazon EC2 instances, and you are billed for them
based on normal Amazon EC2 instance prices. For more information, see Amazon EC2 Pricing.

To launch your worker nodes

1. Wait for your cluster status to show as ACTIVE. If you launch your worker nodes before the cluster is
active, the worker nodes will fail to register with the cluster and you will have to relaunch them.
Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

From the navigation bar, select a Region that supports Amazon EKS.

Choose Create stack.

For Choose a template, select Specify an Amazon S3 template URL.

A

Paste the following URL into the text area and choose Next:

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
nodegroup.yaml

Note

If you intend to only deploy worker nodes to private subnets, you should edit this template
in the AWS CloudFormation designer and modify the AssociatePublicIpAddress
parameter in the NodeLaunchConfig to be false.

AssociatePublicIpAddress: 'false'

7. On the Specify Details page, fill out the following parameters accordingly, and choose Next.
« Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you can call
it <cluster-name>-worker-nodes.

o ClusterName: Enter the name that you used when you created your Amazon EKS cluster.

Important
This name must exactly match the name you used in Step 1: Create Your Amazon EKS
Cluster (p. 11); otherwise, your worker nodes cannot join the cluster.

o ClusterControlPlaneSecurityGroup: Choose the SecurityGroups value from the AWS
CloudFormation output that you generated with Create your Amazon EKS Cluster VPC (p. 9).

« NodeGroupName: Enter a name for your node group. This name can be used later to identify the
Auto Scaling node group that is created for your worker nodes.

« NodeAutoScalingGroupMinSize: Enter the minimum number of nodes that your worker node
Auto Scaling group can scale in to.

« NodeAutoScalingGroupDesiredCapacity: Enter the desired number of nodes to scale to when
your stack is created.

14

https://aws.amazon.com/ec2/pricing/
https://console.aws.amazon.com/cloudformation/

Amazon EKS User Guide
Step 3: Launch and Configure Amazon EKS Worker Nodes

« NodeAutoScalingGroupMaxSize: Enter the maximum number of nodes that your worker node
Auto Scaling group can scale out to.

« NodelnstanceType: Choose an instance type for your worker nodes.

Important
Some instance types might not be available in all regions.

« Nodelmageld: Enter the current Amazon EKS worker node AMI ID for your Region. The AMI IDs for
the latest Amazon EKS-optimized AMI (with and without GPU support (p. 53)) are shown in the
following table.

Note

The Amazon EKS-optimized AMI with GPU support only supports P2 and P3 instance
types. Be sure to specify these instance types in your worker node AWS CloudFormation
template. By using the Amazon EKS-optimized AMI with GPU support, you agree to
NVIDIA's end user license agreement (EULA).

Kubernetes version 1.13.8

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Amazon EKS-optimized AMI
ami-027683840ad78d833

ami-0d3998d69ebe9b214

ami-00b95829322267382

ami-03£8634a8fd592414

ami-0062e5b0411le77cla

ami-0a67c71d2ab43d36f

ami-0d66d2fefbc86831a

ami-06206d907abb34bbc

ami-09f2d86£2d8c4£f77d

ami-038bd8d3a2345061f

ami-0199284372364b02a
ami-0£f454b09349248e29
ami-00b44348ab3eb2c9of

ami-02218be9004537a65

with GPU support
ami-0af8403c143fd4a07

ami-0484012ada3522476

ami-0d24da600cc96ae6b

ami-080eb165234752969

ami-010dbb7183ab64b39

ami-069303796840£8155

ami-04£f71dc710ff5baf4

ami-0213£fc532blc2e05f

ami-01fc0a4c67£82532b

ami-07b7cbb235789cc31

ami-00bfeece5b673b69f
ami-Obabebc79dbf6016c
ami-03136b5b83c5b61ba

ami-05782laceal5cla9s8

15

https://www.nvidia.com/en-us/about-nvidia/eula-agreement/

Amazon EKS User Guide
Step 3: Launch and Configure Amazon EKS Worker Nodes

Kubernetes version 1.12.10

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Kubernetes version 1.11.10

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Amazon EKS-optimized AMI
ami-Oebblc51e5fe9c376

ami-01e370£796735b244

ami-0b520e822d42998cl

ami-0aa07b9e8bfcdaaff

ami-03b7b0e3088a72394

ami-0£554256ac7b33081

ami-066a40f5f0e0b90f4

ami-06a42a7479836d402

ami-0£93997£60ca40d26

ami-04341c15¢2£f941589

ami-018b4a3f81£f517183
ami-0£fd0b45d54£80a0e9
ami-0b12420c7£7281432

ami-01lclbOb8dcbd02bll

Amazon EKS-optimized AMI
ami-0e565ff1ccb9b6979

ami-08571céceeladbbé2

ami-0566833f0c8e9031e

ami-0e2e431905d176277

with GPU support
ami-0b42bfc7af8bb3abc

ami-0eb0119£55d589a03

ami-0c9156d7fcd3c2948

ami-0a5e7de0e5d22a988

ami-0clbc87££613a979b

ami-0e2£87975£5aa9908

ami-08101c357b41e9f9%a

ami-0420c66a82472f4b2

ami-04a085528a6af6499

ami-09c45f4e40a56254b

ami-04668c090ff8c1£f50
ami-0b925567bd252e74c
ami-0f975ac243bcd0dal

ami-093da2874a5426ce3

with GPU support
ami-0f9e62727a55£68d3

ami-0c3d92683a7946ac3

ami-058b22acd515ec20b

ami-Obaf9ac8446e87£fb5

16

Amazon EKS User Guide
Step 3: Launch and Configure Amazon EKS Worker Nodes

10.
11.

Region

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-

Amazon EKS-optimized AMI

ami-073c3d075aeb53d1f

ami-0644b094efc34d888

ami-0ab0067299faa5229

ami-087£58c635bb8283b

ami-06caef7a88fd74af2

ami-099b3£f8db68693895

ami-06b60c5852910e7b5
ami-0b56c1f39e4bleb8e
ami-036237d1951bfeabc

ami-0612e10dfe00c5£ff6

with GPU support

ami-0c709282458d1114c

ami-023£f507ec007de487

ami-Occbbe6530310b01d

ami-0341435cf966cb837

ami-0987b07bd338£97db

ami-060£13bd7397£782d

ami-0d84963dfda5af073
ami-0189e53a00d37a0bé
ami-Obaea83f5f5d2abfe

ami-0d5b7823e58094232

north-1)

Note

The Amazon EKS worker node AMI is based on Amazon Linux 2. You can track security
or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or subscribe
to the associated RSS feed. Security and privacy events include an overview of the issue,
what packages are affected, and how to update your instances to correct the issue.

KeyName: Enter the name of an Amazon EC2 SSH key pair that you can use to connect using SSH
into your worker nodes with after they launch. If you don't already have an Amazon EC2 keypair,
you can create one in the AWS Management Console. For more information, see Amazon EC2 Key
Pairs in the Amazon EC2 User Guide for Linux Instances.

Note
If you do not provide a keypair here, the AWS CloudFormation stack creation fails.

BootstrapArguments: Specify any optional arguments to pass to the worker node bootstrap
script, such as extra kubelet arguments. For more information, view the bootstrap script usage
information at https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh

Vpcld: Enter the ID for the VPC that you created in Create your Amazon EKS Cluster
VPC (p. 9).

Subnets: Choose the subnets that you created in Create your Amazon EKS Cluster VPC (p. 9).
If you created your VPC using the steps described at Creating a VPC for Your Amazon EKS
Cluster (p. 80), then specify only the private subnets within the VPC for your worker nodes to
launch into.

On the Options page, you can choose to tag your stack resources. Choose Next.

On the Review page, review your information, acknowledge that the stack might create IAM
resources, and then choose Create.

When your stack has finished creating, select it in the console and choose the Outputs tab.

Record the NodelnstanceRole for the node group that was created. You need this when you
configure your Amazon EKS worker nodes.

17

https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh

Amazon EKS User Guide
Next Steps

To enable worker nodes to join your cluster
1. Download, edit, and apply the AWS authenticator configuration map:

a. Download the configuration map with the following command:

curl -o aws-auth-cm.yaml https://amazon-eks.s3-us-west-2.amazonaws.com/
cloudformation/2019-02-11/aws-auth-cm.yaml

b. Open the file with your favorite text editor. Replace the <ARN of instance role (not
instance profile)> snippet with the NodelnstanceRole value that you recorded in the
previous procedure, and save the file.

Important
Do not modify any other lines in this file.

apiversion: vi1
kind: ConfigMap
metadata:
name: aws-auth
namespace: kube-system
data:
mapRoles: |
- rolearn: <ARN of instance role (not instance profile)>
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes

c. Apply the configuration. This command might take a few minutes to finish.

kubectl apply -f aws-auth-cm.yaml

Note

If you receive the error "aws-iam-authenticator": executable file

not found in $PATH, your kubectl isn't configured for Amazon EKS. For more
information, see Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or
Access Denied (kubectl) (p. 180) in the troubleshooting section.

2. Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

3. (GPU workers only) If you chose a P2 or P3 instance type and the Amazon EKS-optimized AMI with
GPU support, you must apply the NVIDIA device plugin for Kubernetes as a DaemonSet on your
cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta/
nvidia-device-plugin.yml

Next Steps

Now that you have a working Amazon EKS cluster with worker nodes, you are ready to start installing
Kubernetes add-ons and deploying applications to your cluster. The following documentation topics help
you to extend the functionality of your cluster.

18

https://github.com/NVIDIA/k8s-device-plugin

Amazon EKS User Guide
Next Steps

Launch a Guest Book Application (p. 125) — Create a sample guest book application to test your
cluster.

Tutorial: Deploy the Kubernetes Web Ul (Dashboard) (p. 138) — This tutorial guides you through
deploying the Kubernetes dashboard to your cluster.

Using Helm with Amazon EKS (p. 135) — The helm package manager for Kubernetes helps you
install and manage applications on your cluster.

Installing the Kubernetes Metrics Server (p. 129) — The Kubernetes metrics server is an aggregator
of resource usage data in your cluster.

Control Plane Metrics with Prometheus (p. 131) — This topic helps you deploy Prometheus into your
cluster with helm.

19

https://github.com/kubernetes/dashboard

Amazon EKS User Guide
Creating a Cluster

Amazon EKS Clusters

An Amazon EKS cluster consists of two primary components:

« The Amazon EKS control plane
« Amazon EKS worker nodes that are registered with the control plane

The Amazon EKS control plane consists of control plane nodes that run the Kubernetes software, such
as etcd and the Kubernetes API server. The control plane runs in an account managed by AWS, and the
Kubernetes API is exposed via the Amazon EKS endpoint associated with your cluster. Each Amazon EKS
cluster control plane is single-tenant and unique, and runs on its own set of Amazon EC2 instances.

The cluster control plane is provisioned across multiple Availability Zones and fronted by an Elastic Load
Balancing Network Load Balancer. Amazon EKS also provisions elastic network interfaces in your VPC
subnets to provide connectivity from the control plane instances to the worker nodes (for example, to
support kubectl exec, logs, and proxy data flows).

Amazon EKS worker nodes run in your AWS account and connect to your cluster's control plane via the
API server endpoint and a certificate file that is created for your cluster.

Topics
» Creating an Amazon EKS Cluster (p. 20)
» Updating an Amazon EKS Cluster Kubernetes Version (p. 26)
« Amazon EKS Cluster Endpoint Access Control (p. 35)
« Amazon EKS Control Plane Logging (p. 38)
 Deleting a Cluster (p. 41)
o Amazon EKS Kubernetes Versions (p. 43)
« Platform Versions (p. 45)

Creating an Amazon EKS Cluster

This topic walks you through creating an Amazon EKS cluster.

If this is your first time creating an Amazon EKS cluster, we recommend that you follow one of our
Getting Started with Amazon EKS (p. 3) guides instead. They provide complete end-to-end walkthroughs
for creating an Amazon EKS cluster with worker nodes.

Important

When an Amazon EKS cluster is created, the IAM entity (user or role) that creates the cluster is
added to the Kubernetes RBAC authorization table as the administrator (with system:master
permissions. Initially, only that IAM user can make calls to the Kubernetes API server using
kubectl. For more information, see Managing Users or IAM Roles for your Cluster (p. 116). If
you use the console to create the cluster, you must ensure that the same IAM user credentials
are in the AWS SDK credential chain when you are running kubectl commands on your cluster.
If you install and configure the AWS CLI, you can configure the IAM credentials for your user. If
the AWS CLlI is configured properly for your user, then eksctl and the AWS IAM Authenticator
for Kubernetes can find those credentials as well. For more information, see Configuring the
AWS CLI in the AWS Command Line Interface User Guide.

Choose the tab below that corresponds to your desired cluster creation method:

20

https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Amazon EKS User Guide
Creating a Cluster

eksctl

To create your cluster and worker nodes with eksetl

This procedure assumes that you have installed eksct1l, and that your eksct1l version is at least
0.1.37.You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksctl, see Installing or Upgrading
eksctl (p. 120).

1. Create your Amazon EKS cluster and worker nodes with the following command. Substitute the
red text with your own values.

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer
create new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes
version 1.10 will eventually be automatically updated to the latest available platform
version of Kubernetes version 1.11. For more information, see Amazon EKS Version
Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service
interruption. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

eksctl create cluster \

--name prod \

--version 1.13 \

--nodegroup-name standard-workers \
--node-type t3.medium \

--nodes 3 \

--nodes-min 1 \

--nodes-max 4 \

--node-ami auto

Note
For more information on the available options for eksctl create cluster, see the project
README on GitHub or view the help page with the following command.

eksctl create cluster --help

Output:

[#] wusing region us-west-2

[#] setting availability zones to [us-west-2b us-west-2c us-west-2d]

[#] subnets for us-west-2b - public:192.168.0.0/19 private:192.168.96.0/19
[#] subnets for us-west-2c - public:192.168.32.0/19 private:192.168.128.0/19
[#] subnets for us-west-2d - public:192.168.64.0/19 private:192.168.160.0/19
[#] nodegroup "standard-workers" will use

"ami-0923e4b35a30a5f53" [AmazonLinux2/1.12]

[#] creating EKS cluster "prod" in "us-west-2" region

[#] will create 2 separate CloudFormation stacks for cluster itself and the
initial nodegroup

[#] if you encounter any issues, check CloudFormation console or try 'eksctl utils
describe-stacks --region=us-west-2 --name=prod’

[#] building cluster stack "eksctl-prod-cluster"

[#] creating nodegroup stack "eksctl-prod-nodegroup-standard-workers"

[#] all EKS cluster resource for "prod" had been created

[#] saved kubeconfig as "/Users/ericn/.kube/config"

21

https://github.com/weaveworks/eksctl/blob/master/README.md

Amazon EKS User Guide
Creating a Cluster

[#] adding role "arn:aws:iam::111122223333:role/eksctl-prod-nodegroup-standard-wo-
NodeInstanceRole-IJP4S12W3020" to auth ConfigMap

[#] nodegroup "standard-workers" has 0 node(s)

[#] waiting for at least 1 node(s) to become ready in "standard-workers"

[#] nodegroup "standard-workers" has 2 node(s)

[#] node "ip-192-168-22-17.us-west-2.compute.internal"” is not ready

[#] node "ip-192-168-32-184.us-west-2.compute.internal" is ready

[#] kubectl command should work with "/Users/ericn/.kube/config", try 'kubectl get
nodes'

[#] EKS cluster "prod" in "us-west-2" region is ready

2. Cluster provisioning usually takes between 10 and 15 minutes. When your cluster is ready, test
that your kubect1 configuration is correct.

kubectl get svc

Note

If you receive the error "aws-iam-authenticator": executable file

not found in $PATH, your kubectl isn't configured for Amazon EKS. For more
information, see Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or
Access Denied (kubectl) (p. 180) in the troubleshooting section.

Output:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes ClusterIP 10.100.0.1 <none> 443 /TCP im

3. (GPU workers only) If you chose a P2 or P3 instance type and the Amazon EKS-optimized AMI
with GPU support, you must apply the NVIDIA device plugin for Kubernetes as a DaemonSet on
your cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-
beta/nvidia-device-plugin.yml

AWS Management Console
To create your cluster with the console
This procedure has the following prerequisites:

« You have created a VPC and a dedicated security group that meet the requirements for an Amazon
EKS cluster. For more information, see Cluster VPC Considerations (p. 82) and Cluster Security
Group Considerations (p. 84). The Getting Started with the AWS Management Console (p. 8)
guide creates a VPC that meets the requirements, or you can also follow Creating a VPC for Your
Amazon EKS Cluster (p. 80) to create one.

» You have created an Amazon EKS service role to apply to your cluster. The Getting Started with
Amazon EKS (p. 3) guide creates a service role for you, or you can also follow Amazon EKS IAM
Roles (p. 163) to create one manually.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
2. Choose Create cluster.

Note

If your IAM user doesn't have administrative privileges, you must explicitly add

permissions for that user to call the Amazon EKS API operations. For more information,
see Amazon EKS Identity-Based Policy Examples (p. 164).

22

https://github.com/NVIDIA/k8s-device-plugin
https://console.aws.amazon.com/eks/home#/clusters

Amazon EKS User Guide
Creating a Cluster

3. On the Create cluster page, fill in the following fields and then choose Create:

o Cluster name - A unique name for your cluster.

« Kubernetes version — The version of Kubernetes to use for your cluster. Unless you require
a specific Kubernetes version for your application, we recommend that you use the latest
version available in Amazon EKS.

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer
create new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes
version 1.10 will eventually be automatically updated to the latest available platform
version of Kubernetes version 1.11. For more information, see Amazon EKS Version
Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service
interruption. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

« Role name - Choose the Amazon EKS service role to allow Amazon EKS and the Kubernetes
control plane to manage AWS resources on your behalf. For more information, see Amazon
EKS IAM Roles (p. 163).

e VPC-The VPC to use for your cluster.

« Subnets — The subnets within the preceding VPC to use for your cluster. By default, the
available subnets in the VPC are preselected. Specify all subnets that will host resources for
your cluster (such as private subnets for worker nodes and public subnets for load balancers).
Your subnets must meet the requirements for an Amazon EKS cluster. For more information,
see Cluster VPC Considerations (p. 82).

« Security Groups - Specify one or more (up to a limit of five) security groups within the
preceding VPC to apply to the cross-account elastic network interfaces for your cluster. Your
cluster and worker node security groups must meet the requirements for an Amazon EKS
cluster. For more information, see Cluster Security Group Considerations (p. 84).

Important

The worker node AWS CloudFormation template modifies the security group that
you specify here, so Amazon EKS strongly recommends that you use a dedicated
security group for each cluster control plane (one per cluster). If this security
group is shared with other resources, you might block or disrupt connections to those
resources.

« Endpoint private access — Choose whether to enable or disable private access for your
cluster's Kubernetes API server endpoint. If you enable private access, Kubernetes API
requests that originate from within your cluster's VPC use the private VPC endpoint. For more
information, see Amazon EKS Cluster Endpoint Access Control (p. 35).

« Endpoint public access - Choose whether to enable or disable public access for your cluster's
Kubernetes API server endpoint. If you disable public access, your cluster's Kubernetes API
server can receive only requests from within the cluster VPC. For more information, see
Amazon EKS Cluster Endpoint Access Control (p. 35).

« Logging - For each individual log type, choose whether the log type should be Enabled
or Disabled. By default, each log type is Disabled. For more information, see Amazon EKS
Control Plane Logging (p. 38).

Note

You might receive an error that one of the Availability Zones in your request doesn't
have sufficient capacity to create an Amazon EKS cluster. If this happens, the error
output contains the Availability Zones that can support a new cluster. Retry creating
your cluster with at least two subnets that are located in the supported Availability
Zones for your account. For more information, see Insufficient Capacity (p. 180).

4. On the Clusters page, choose the name of your new cluster to view the cluster information.

23

Amazon EKS User Guide
Creating a Cluster

5. The Status field shows CREATING until the cluster provisioning process completes. When your
cluster provisioning is complete (usually between 10 and 15 minutes), note the API server
endpoint and Certificate authority values. These are used in your kubectl configuration.

6. Now that you have created your cluster, follow the procedures in Installing aws-iam-
authenticator (p. 109) and Create a kubeconfig for Amazon EKS (p. 112) to enable
communication with your new cluster.

7. After you enable communication, follow the procedures in Launching Amazon EKS Worker
Nodes (p. 57) to add worker nodes to your cluster to support your workloads.

AWS CLI

To create your cluster with the AWS CLI

This procedure has the following prerequisites:

« You have created a VPC and a dedicated security group that meets the requirements for an
Amazon EKS cluster. For more information, see Cluster VPC Considerations (p. 82) and Cluster
Security Group Considerations (p. 84). The Getting Started with the AWS Management
Console (p. 8) guide creates a VPC that meets the requirements, or you can also follow Creating a
VPC for Your Amazon EKS Cluster (p. 80) to create one.

« You have created an Amazon EKS service role to apply to your cluster. The Getting Started with
Amazon EKS (p. 3) guide creates a service role for you, or you can also follow Amazon EKS IAM
Roles (p. 163) to create one manually.

1. Create your cluster with the following command. Substitute your cluster name, the Amazon
Resource Name (ARN) of your Amazon EKS service role that you created in Create your Amazon
EKS Service Role (p. 8), and the subnet and security group IDs for the VPC that you created in
Create your Amazon EKS Cluster VPC (p. 9).

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer
create new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes
version 1.10 will eventually be automatically updated to the latest available platform
version of Kubernetes version 1.11. For more information, see Amazon EKS Version
Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service
interruption. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

aws eks --region region create-cluster --name devel --kubernetes-version 1.13 \
--role-arn arn:aws:iam::111122223333:role/eks-service-role-
AWSServiceRoleForAmazonEKS-EXAMPLEBKZROR \

--resources-vpc-config subnetIds=subnet-
a9189fe2,subnet-50432629,securityGroupIds=sg-f5c54184

Important

If you receive a syntax error similar to the following, you might be using a preview
version of the AWS CLI for Amazon EKS. The syntax for many Amazon EKS commands
has changed since the public service launch. Update your AWS CLI version to the latest
available and delete the custom service model directory at ~/.aws/models/eks.

aws: error: argument --cluster-name is required

24

Amazon EKS User Guide
Creating a Cluster

Note

If your IAM user doesn't have administrative privileges, you must explicitly add
permissions for that user to call the Amazon EKS API operations. For more information,
see Amazon EKS Identity-Based Policy Examples (p. 164).

Output:
{
"cluster": {
"name": "devel",
"arn": "arn:aws:eks:us-west-2:111122223333:cluster/devel",
"createdAt": 1527785885.159,
"version": "1.13",
"roleArn": "arn:aws:iam::111122223333:role/eks-service-role-

AWSServiceRoleForAmazonEKS-AFNL4H8HB71F",
"resourcesVpcConfig": {

"subnetIds": [
"subnet-a9189fe2",
"subnet-50432629"

1,

"securityGroupIds": [
"sg-f5c54184"

1,

"vpcId": "vpc-a54041dc",

"endpointPublicAccess": true,

"endpointPrivateAccess": false

Iy
"status": "CREATING",
"certificateAuthority": {}
}
}
Note

You might receive an error that one of the Availability Zones in your request doesn't
have sufficient capacity to create an Amazon EKS cluster. If this happens, the error
output contains the Availability Zones that can support a new cluster. Retry creating
your cluster with at least two subnets that are located in the supported Availability
Zones for your account. For more information, see Insufficient Capacity (p. 180).

Cluster provisioning usually takes between 10 and 15 minutes. You can query the status of your

cluster with the following command. When your cluster status is ACTIVE, you can proceed.

aws eks --region region describe-cluster --name devel --query cluster.status

When your cluster provisioning is complete, retrieve the endpoint and
certificateAuthority.data values with the following commands. You must add these
values to your kubectl configuration so that you can communicate with your cluster.

a. Retrieve the endpoint.

--output text

aws eks --region region describe-cluster --name devel --query cluster.endpoint

b. Retrieve the certificateAuthority.data.

aws eks --region region describe-cluster --name devel --query
cluster.certificateAuthority.data --output text

25

Amazon EKS User Guide
Updating Kubernetes Version

4. Now that you have created your cluster, follow the procedures in Installing aws-iam-
authenticator (p. 109) and Create a kubeconfig for Amazon EKS (p. 112) to enable
communication with your new cluster.

5. After you enable communication, follow the procedures in Launching Amazon EKS Worker
Nodes (p. 57) to add worker nodes to your cluster to support your workloads.

Updating an Amazon EKS Cluster Kubernetes
Version

When a new Kubernetes version is available in Amazon EKS, you can update your cluster to the latest
version. New Kubernetes versions introduce significant changes, so we recommend that you test the
behavior of your applications against a new Kubernetes version before performing the update on your
production clusters. You can achieve this by building a continuous integration workflow to test your
application behavior end-to-end before moving to a new Kubernetes version.

The update process consists of Amazon EKS launching new API server nodes with the updated
Kubernetes version to replace the existing ones. Amazon EKS performs standard infrastructure and
readiness health checks for network traffic on these new nodes to verify that they are working as
expected. If any of these checks fail, Amazon EKS reverts the infrastructure deployment, and your cluster
remains on the prior Kubernetes version. Running applications are not affected, and your cluster is never
left in a non-deterministic or unrecoverable state. Amazon EKS regularly backs up all managed clusters,
and mechanisms exist to recover clusters if necessary. We are constantly evaluating and improving our
Kubernetes infrastructure management processes.

In order to upgrade the cluster, Amazon EKS requires 2-3 free IP addresses from the subnets which were
provided when you created the cluster. If these subnets do not have available IP addresses, then the
upgrade can fail. Additionally, if any of the subnets or security groups that were provided during cluster
creation have been deleted, the cluster upgrade process can fail.

Note

Although Amazon EKS runs a highly available control plane, you might experience minor service
interruptions during an update. For example, if you attempt to connect to an API server just
before or just after it's terminated and replaced by a new API server running the new version

of Kubernetes, you might experience API call errors or connectivity issues. If this happens, retry
your API operations until they succeed.

Amazon EKS does not modify any of your Kubernetes add-ons when you update a cluster. After updating
your cluster, we recommend that you update your add-ons to the versions listed in the following table
for the new Kubernetes version that you're updating to (steps to accomplish this are included in the
update procedures).

Kubernetes Version 1.11 1.12 1.13

Amazon VPC CNI plug- | We recommend the latest available CNI version (1.5.3)

in
DNS CoreDNS 1.1.3 CoreDNS 1.2.2 CoreDNS 1.2.6
KubeProxy 1.11.8 1.12.6 1.13.7

Important
Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer create
new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes version 1.10 will

26

Amazon EKS User Guide
Updating Kubernetes Version

eventually be automatically updated to the latest available platform version of Kubernetes
version 1.11. For more information, see Amazon EKS Version Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service interruption.
For more information, see Updating an Amazon EKS Cluster Kubernetes Version (p. 26).

If you're using additional add-ons for your cluster that aren't listed in the previous table, update them to
the latest compatible versions after updating your cluster.

Choose the tab below that corresponds to your desired cluster update method:
eksctl
To update an existing cluster with eksctl

This procedure assumes that you have installed eksctl, and that your eksctl version is at least
0.1.37.You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksctl, see Installing or Upgrading
eksctl (p. 120).

Note
This procedure only works for clusters that were created with eksctl.

1. Compare the Kubernetes version of your cluster control plane to the Kubernetes version of your
worker nodes.

« Get the Kubernetes version of your cluster control plane with the following command.

kubectl version --short

Get the Kubernetes version of your worker nodes with the following command.

kubectl get nodes

If your worker nodes are more than one Kubernetes minor version older than your control plane,
then you must upgrade your worker nodes to a newer Kubernetes minor version before you
update your cluster's Kubernetes version. For more information, see Kubernetes version and
version skew support policy in the Kubernetes documentation.

We recommend that you update your worker nodes to your cluster's current pre-update
Kubernetes minor version prior to your cluster update. Your worker nodes must not run a newer
Kubernetes version than your control plane. For example, if your control plane is running version
1.12 and your workers are running version 1.10, update your worker nodes to version 1.11 or
1.12 (recommended) before you update your cluster’s Kubernetes version to 1.13. For more
information, see Worker Node Updates (p. 64).

2. Update your Amazon EKS cluster Kubernetes version with the following command, replacing the
red text with your cluster name:

eksctl update cluster --name dev --approve

This process takes several minutes to complete.

3. Patch the kube-proxy daemonset to use the image that corresponds to your current cluster
Kubernetes version (in this example, 1.13. 7).

27

https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/setup/release/version-skew-policy/

Amazon EKS User Guide
Updating Kubernetes Version

Kubernetes Version 1.11 1.12 1.13

KubeProxy 1.11.8 1.12.6 1.13.7

kubectl set image daemonset.apps/kube-proxy \
-n kube-system \
kube-proxy=602401143452.dkr.ecr.us-west-2.amazonaws.com/eks/kube-proxy:v1i.13.7

Check your cluster's DNS provider. Clusters that were created with Kubernetes version 1.10
shipped with kube-dns as the default DNS and service discovery provider. If you have updated
a 1.10 cluster to a newer version and you want to use CoreDNS for DNS and service discovery,
you must install CoreDNS and remove kube-dns.

To check if your cluster is already running CoreDNS, use the following command.

kubectl get pod -n kube-system -1 k8s-app=kube-dns

If the output shows coredns in the pod names, you're already running CoreDNS in your cluster.
If not, run the following command to install coredns, replacing the red text with your cluster
name:

eksctl utils install-coredns --name dev --approve

Check the current version of your cluster's coredns deployment.

kubectl describe deployment coredns --namespace kube-system | grep Image | cut -d
ll/" _f 3

The recommended coredns versions for their corresponding Kubernetes versions are as
follows:

« Kubernetes 1.13:1.2.6

e Kubernetes 1.12:1.2.2

¢ Kubernetes 1.11:1.1.3

If your current coredns version doesn't match the recommendation for your cluster version,
update the coredns deployment to use the recommended image.

kubectl set image --namespace kube-system deployment.apps/coredns \
coredns=602401143452.dkr.ecr.us-west-2.amazonaws.com/eks/coredns:v1i.2.2

Check the version of your cluster's Amazon VPC CNI Plugin for Kubernetes. Use the following
command to print your cluster's CNI version.

kubectl describe daemonset aws-node --namespace kube-system | grep Image | cut -d
"/" _f 2

Output:

amazon-k8s-cni:1.4.1

28

Amazon EKS User Guide
Updating Kubernetes Version

If your CNI version is earlier than 1.5.3, use the following command to upgrade your CNI version
to the latest version:

« For Kubernetes 1.10 clusters:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl.5/aws-k8s-cni-1.10.yaml

« For all other Kubernetes versions:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl1.5/aws-k8s-cni.yaml

(Clusters with GPU workers only) If your cluster has worker node groups with GPU support (for
example, p3.2xlarge), you must update the NVIDIA device plugin for Kubernetes DaemonSet
on your cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-
beta/nvidia-device-plugin.yml

After your cluster update is complete, update your worker nodes to the same Kubernetes
version of your updated cluster. For more information, see Worker Node Updates (p. 64).

AWS Management Console

To update an existing cluster with the console

1.

Compare the Kubernetes version of your cluster control plane to the Kubernetes version of your
worker nodes.

« Get the Kubernetes version of your cluster control plane with the following command.

kubectl version --short

Get the Kubernetes version of your worker nodes with the following command.

kubectl get nodes

If your worker nodes are more than one Kubernetes minor version older than your control plane,
then you must upgrade your worker nodes to a newer Kubernetes minor version before you
update your cluster's Kubernetes version. For more information, see Kubernetes version and
version skew support policy in the Kubernetes documentation.

We recommend that you update your worker nodes to your cluster's current pre-update
Kubernetes minor version prior to your cluster update. Your worker nodes must not run a newer
Kubernetes version than your control plane. For example, if your control plane is running version
1.12 and your workers are running version 1.10, update your worker nodes to version 1.11 or
1.12 (recommended) before you update your cluster’s Kubernetes version to 1.13. For more
information, see Worker Node Updates (p. 64).

Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
Choose the name of the cluster to update and choose Update cluster version.

For Kubernetes version, select the version to update your cluster to and choose Update.

29

https://github.com/NVIDIA/k8s-device-plugin
https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/setup/release/version-skew-policy/
https://console.aws.amazon.com/eks/home#/clusters

Amazon EKS User Guide
Updating Kubernetes Version

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer
create new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes
version 1.10 will eventually be automatically updated to the latest available platform
version of Kubernetes version 1.11. For more information, see Amazon EKS Version
Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service
interruption. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

Important

Because Amazon EKS runs a highly available control plane, you must update only one
minor version at a time. See Kubernetes Version and Version Skew Support Policy for
the rationale behind this requirement. Therefore, if your current version is 1.11 and you
want to upgrade to 1.13, you must first upgrade your cluster to 1.12 and then upgrade
it from 1.12 to 1.13. If you try to update directly from 1.11 to 1.13, the update version
command throws an error.

For Cluster name, type the name of your cluster and choose Confirm.

Note
The cluster update should finish in a few minutes.

Patch the kube-proxy daemonset to use the image that corresponds to your current cluster
Kubernetes version (in this example, 1.13. 7).

Kubernetes Version 1.11 1.12 1.13

KubeProxy 1.11.8 1.12.6 1.13.7

kubectl set image daemonset.apps/kube-proxy \
-n kube-system \
kube-proxy=602401143452.dkr.ecr.us-west-2.amazonaws.com/eks/kube-proxy:v1i.13.7

Check your cluster's DNS provider. Clusters that were created with Kubernetes version 1.10
shipped with kube-dns as the default DNS and service discovery provider. If you have updated
a 1.10 cluster to a newer version and you want to use CoreDNS for DNS and service discovery,
you must install CoreDNS and remove kube-dns.

To check if your cluster is already running CoreDNS, use the following command.

kubectl get pod -n kube-system -1 k8s-app=kube-dns

If the output shows coredns in the pod names, you're already running CoreDNS in your cluster.
If not, see Installing CoreDNS (p. 89) to install CoreDNS on your cluster and then return here.

Check the current version of your cluster's coredns deployment.

kubectl describe deployment coredns --namespace kube-system | grep Image | cut -d
" ”
/" -f 3

The recommended coredns versions for their corresponding Kubernetes versions are as
follows:

¢ Kubernetes 1.13:1.2.6
« Kubernetes 1.12:1.2.2
¢ Kubernetes 1.11:1.1.3

30

https://kubernetes.io/docs/setup/version-skew-policy/#kube-apiserver

Amazon EKS User Guide
Updating Kubernetes Version

10.

11.

AWS CLI

If your current coredns version doesn't match the recommendation for your cluster version,
update the coredns deployment to use the recommended image.

kubectl set image --namespace kube-system deployment.apps/coredns \
coredns=602401143452.dkr.ecr.us-west-2.amazonaws.com/eks/coredns:v1i.2.2

Check the version of your cluster's Amazon VPC CNI Plugin for Kubernetes. Use the following
command to print your cluster's CNI version.

kubectl describe daemonset aws-node --namespace kube-system | grep Image | cut -d
"/" _f 2

Output:

amazon-k8s-cni:1.4.1

If your CNI version is earlier than 1.5.3, use the following command to upgrade your CNI version
to the latest version.

o For Kubernetes 1.10 clusters:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl.5/aws-k8s-cni-1.10.yaml

« For all other Kubernetes versions:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl.5/aws-k8s-cni.yaml

(Clusters with GPU workers only) If your cluster has worker node groups with GPU support (for
example, p3.2xlarge), you must update the NVIDIA device plugin for Kubernetes DaemonSet
on your cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-
beta/nvidia-device-plugin.yml

After your cluster update is complete, update your worker nodes to the same Kubernetes
version of your updated cluster. For more information, see Worker Node Updates (p. 64).

To update an existing cluster with the AWS CLI

1.

Compare the Kubernetes version of your cluster control plane to the Kubernetes version of your
worker nodes.

« Get the Kubernetes version of your cluster control plane with the following command.

kubectl version --short

Get the Kubernetes version of your worker nodes with the following command.

kubectl get nodes

31

https://github.com/NVIDIA/k8s-device-plugin

Amazon EKS User Guide
Updating Kubernetes Version

If your worker nodes are more than one Kubernetes minor version older than your control plane,
then you must upgrade your worker nodes to a newer Kubernetes minor version before you
update your cluster's Kubernetes version. For more information, see Kubernetes version and
version skew support policy in the Kubernetes documentation.

We recommend that you update your worker nodes to your cluster's current pre-update
Kubernetes minor version prior to your cluster update. Your worker nodes must not run a newer
Kubernetes version than your control plane. For example, if your control plane is running version
1.12 and your workers are running version 1.10, update your worker nodes to version 1.11 or
1.12 (recommended) before you update your cluster’s Kubernetes version to 1.13. For more
information, see Worker Node Updates (p. 64).

Update your cluster with the following AWS CLI command. Substitute your cluster name and
desired Kubernetes minor version.

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer
create new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes
version 1.10 will eventually be automatically updated to the latest available platform
version of Kubernetes version 1.11. For more information, see Amazon EKS Version
Deprecation (p. 44).

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service
interruption. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

Important

Because Amazon EKS runs a highly available control plane, you must update only one
minor version at a time. See Kubernetes Version and Version Skew Support Policy for
the rationale behind this requirement. Therefore, if your current version is 1.11 and you
want to upgrade to 1.13, you must first upgrade your cluster to 1.12 and then upgrade
it from 1.12 to 1.13. If you try to update directly from 1.11 to 1.13, the update version
command throws an error.

aws eks --region region update-cluster-version --name prod --kubernetes-
version 1.13

Output:
{
"update": {
"id": "b5f0bal8-9a87-4450-b5a0-825e6e84496f",
"status": "InProgress",
"type": "VersionUpdate",
"params": [
{
"type": "Version",
"value": "1.13"
e
{
"type": "PlatformVersion",
"value": "eks.1l"
}
1,
"createdAt": 1544051347.305,
"errors": []
}
}

32

https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/setup/version-skew-policy/#kube-apiserver

Amazon EKS User Guide
Updating Kubernetes Version

Monitor the status of your cluster update with the following command, using the cluster name
and update ID that the previous command returned. Your update is complete when the status
appears as Successful.

Note
The cluster update should finish in a few minutes.

aws eks --region region describe-update --name prod --update-id b5f0bal8-9a87-4450-
b5a0-825e6e84496f

Output:
{
"update": {
"id": "b5f0bal8-9a87-4450-b5a0-825e6e84496f",
"status": "Successful",
"type": "VersionUpdate",
"params": [
{
"type": "Version",
"value": "1.13"
e
{
"type": "PlatformVersion",
"value": "eks.1l"
}
1,
"createdAt": 1544051347.305,
"errors": []
}
}

Patch the kube-proxy daemonset to use the image that corresponds to your current cluster
Kubernetes version (in this example, 1.13. 7).

Kubernetes Version 1.11 1.12 1.13

KubeProxy 1.11.8 1.12.6 1.13.7

kubectl set image daemonset.apps/kube-proxy \
-n kube-system \
kube-proxy=602401143452.dkr.ecr.us-west-2.amazonaws.com/eks/kube-proxy:vi.13.7

Check your cluster's DNS provider. Clusters that were created with Kubernetes version 1.10
shipped with kube-dns as the default DNS and service discovery provider. If you have updated
a 1.10 cluster to a newer version and you want to use CoreDNS for DNS and service discovery,
you must install CoreDNS and remove kube-dns.

To check if your cluster is already running CoreDNS, use the following command.

kubectl get pod -n kube-system -1 k8s-app=kube-dns

If the output shows coredns in the pod names, you're already running CoreDNS in your cluster.
If not, see Installing CoreDNS (p. 89) to install CoreDNS on your cluster and then return here.

Check the current version of your cluster's coredns deployment.

33

Amazon EKS User Guide
Updating Kubernetes Version

kubectl describe deployment coredns --namespace kube-system | grep Image | cut -d
"/" _f 3

The recommended coredns versions for their corresponding Kubernetes versions are as
follows:

¢ Kubernetes 1.13:1.2.6

¢ Kubernetes 1.12:1.2.2

¢ Kubernetes 1.11:1.1.3

If your current coredns version doesn't match the recommendation for your cluster version,
update the coredns deployment to use the recommended image.

kubectl set image --namespace kube-system deployment.apps/coredns \
coredns=602401143452.dkr.ecr.us-west-2.amazonaws.com/eks/coredns:v1i.2.6

Check the version of your cluster's Amazon VPC CNI Plugin for Kubernetes. Use the following
command to print your cluster's CNI version.

kubectl describe daemonset aws-node --namespace kube-system | grep Image | cut -d
"/" _f 2

Output:

amazon-k8s-cni:1.4.1

If your CNI version is earlier than 1.5.3, use the following command to upgrade your CNI version
to the latest version.

o For Kubernetes 1.10 clusters:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/v1l.5/aws-k8s-cni-1.10.yaml

« For all other Kubernetes versions:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl1l.5/aws-k8s-cni.yaml

(Clusters with GPU workers only) If your cluster has worker node groups with GPU support (for
example, p3.2xlarge), you must update the NVIDIA device plugin for Kubernetes DaemonSet
on your cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-
beta/nvidia-device-plugin.yml

After your cluster update is complete, update your worker nodes to the same Kubernetes
version of your updated cluster. For more information, see Worker Node Updates (p. 64).

34

https://github.com/NVIDIA/k8s-device-plugin

Amazon EKS User Guide
Cluster Endpoint Access

Amazon EKS Cluster Endpoint Access Control

This topic helps you to enable private access for your Amazon EKS cluster's Kubernetes API server
endpoint and completely disable public access so that it's not accessible from the internet.

When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API server
that you use to communicate with your cluster (using Kubernetes management tools such as kubect1l).
By default, this API server endpoint is public to the internet, and access to the API server is secured using
a combination of AWS Identity and Access Management (IAM) and native Kubernetes Role Based Access
Control (RBAC).

You can enable private access to the Kubernetes API server so that all communication between your
worker nodes and the API server stays within your VPC. You can also completely disable public access to
your API server so that it's not accessible from the internet.

Note

Because this endpoint is for the Kubernetes API server and not a traditional AWS PrivateLink
endpoint for communicating with an AWS API, it doesn't appear as an endpoint in the Amazon
VPC console.

When you enable endpoint private access for your cluster, Amazon EKS creates a Route 53 private hosted
zone on your behalf and associates it with your cluster's VPC. This private hosted zone is managed

by Amazon EKS, and it doesn't appear in your account's Route 53 resources. In order for the private
hosted zone to properly route traffic to your API server, your VPC must have enableDnsHostnames

and enableDnsSupport set to true, and the DHCP options set for your VPC must include
AmazonProvidedDNS in its domain name servers list. For more information, see Updating DNS Support
for Your VPC in the Amazon VPC User Guide.

Note

In addition to standard Amazon EKS permissions, your IAM user or role must have
route53:AssociateVPCWithHostedZone permissions to enable the cluster's endpoint
private access.

You can define your API server endpoint access requirements when you create a new cluster, and you can
update the API server endpoint access for a cluster at any time.

Modifying Cluster Endpoint Access

Use the procedures in this section to modify the endpoint access for an existing cluster. The following
table shows the supported API server endpoint access combinations and their associated behavior.

API server endpoint access options

Endpoint Public Access Endpoint Private Access Behavior

Enabled Disabled This is the default behavior for
new Amazon EKS clusters.

o Kubernetes API requests
that originate from within
your cluster's VPC (such as
worker node to control plane
communication) leave the VPC
but not Amazon's network.

« Your cluster API server is
accessible from the internet.

Enabled Enabled o Kubernetes API requests
within your cluster's VPC (such

35

https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating

Amazon EKS User Guide
Modifying Cluster Endpoint Access

Endpoint Public Access Endpoint Private Access Behavior

as worker node to control
plane communication) use the
private VPC endpoint.

« Your cluster API server is
accessible from the internet.

Disabled Enabled « All traffic to your cluster API
server must come from within
your cluster's VPC.

« There is no public access
to your API server from
the internet. Any kubectl
commands must come from
within the VPC as well. For
connectivity options, see
Accessing the API Server from
within the VPC (p. 37).

To modify your cluster API server endpoint access with the console

Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
Choose the name of the cluster to display your cluster information.
Under Networking, choose Update.

PwnN =

For Endpoint private access, choose whether to enable or disable private access for your cluster's
Kubernetes API server endpoint. If you enable private access, Kubernetes API requests that originate
from within your cluster's VPC use the private VPC endpoint. You must enable private access to
disable public access.

5. For Endpoint public access, choose whether to enable or disable public access for your cluster's
Kubernetes API server endpoint. If you disable public access, your cluster's Kubernetes API server can
only receive requests from within the cluster VPC.

6. Choose Update to finish.

To modify your cluster API server endpoint access with the AWS CLI

1. Update your cluster API server endpoint access with the following AWS CLI command. Substitute
your cluster name and desired endpoint access values.

Note
The following command enables private access for the API server endpoint and completely
disables public access.

aws eks --region region update-cluster-config --name dev --resources-vpc-config
endpointPublicAccess=false,endpointPrivateAccess=true

Output:
{
"update": {
"id": "70e7ad6d-8de4-4ed3-9040-1ced27f8c332",
"status": "InProgress",
"type": "EndpointAccessUpdate",
"params": [
{

36

https://console.aws.amazon.com/eks/home#/clusters

Amazon EKS User Guide
Accessing the API Server from within the VPC

"type": "EndpointPublicAccess",
"value": "false"

}e

{
"type": "EndpointPrivateAccess",
"value": "true"

}

1,
"createdAt": 1551817408.563,
"errors": []

}

2. Monitor the status of your endpoint access update with the following command, using the cluster
name and update ID that was returned by the previous command. Your update is complete when the
status is shown as Successful.

aws eks --region region describe-update --name dev --update-
id 70e7adéd-8de4-4ed3-9040-1ced27f8c332
Output:
{
"update": {
"id": "70e7ad6d-8de4-4ed3-9040-1ced27f8c332",
"status": "Successful",
"type": "EndpointAccessUpdate",
"params": [
{
"type": "EndpointPublicAccess",
"value": "false"
Iy
{
"type": "EndpointPrivateAccess",
"value": "true"
}
1,
"createdAt": 1551817408.563,
"errors": []
}
}

Accessing the API Server from within the VPC

If you have disabled public access for your cluster's Kubernetes API server endpoint, you can only access
the API server from within your VPC. Here are a few possible ways to access the Kubernetes API server
endpoint from within the VPC:

Note

You must ensure that your Amazon EKS control plane security group contains rules to allow
ingress traffic for the following solutions. For example, if you are using an Amazon EC2 bastion
host or AWS Cloud9 IDE to communicate with your cluster, then your control plane security
group must allow ingress traffic on port 443 from your bastion host or IDE security group. For
more information, see Cluster Security Group Considerations (p. 84).

The DNS name of the Kubernetes cluster endpoint is only resolvable from the worker node VPC,
for the following reasons:

« The Route 53 private hosted zone that is created for the endpoint is only associated with the
worker node VPC.

37

Amazon EKS User Guide
Control Plane Logging

« The private hosted zone is created in a separate AWS managed account and cannot be altered.

If you want to reach the cluster endpoint from a peered VPC or your on premises network
through AWS Direct Connect or a transit gateway, you must enable DNS resolution for the
cluster endpoint to work outside of the worker node VPC. For more information, see Enabling
DNS resolution for Amazon EKS cluster endpoints.

« Amazon EC2 bastion host: You can launch an Amazon EC2 instance into a public subnet in your
cluster's VPC and then log in via SSH into that instance to run kubectl commands. For more
information, see Linux Bastion Hosts on AWS.

When you configure kubectl for your bastion host, be sure to use AWS credentials that are already
mapped to your cluster's RBAC configuration, or add the IAM user or role that your bastion will

use to the RBAC configuration before you remove endpoint public access. For more information,
see Managing Users or IAM Roles for your Cluster (p. 116) and Unauthorized or Access Denied
(kubectl) (p. 180).

« Transit Gateway: A transit gateway is a network transit hub that you can use to interconnect your
VPCs and on-premises networks. For more information, see What is a Transit Gateway? in the Amazon
VPC Transit Gateways documentation.

« Amazon VPC connectivity options: Amazon VPC provides multiple network connectivity options for
you to leverage depending on your current network designs and requirements. These connectivity
options include leveraging either the internet or an AWS Direct Connect connection as the network
backbone and terminating the connection into either AWS or user-managed network endpoints. For
more information, see Amazon Virtual Private Cloud Connectivity Options.

« AWS Cloud9 IDE: AWS Cloud9 is a cloud-based integrated development environment (IDE) that lets
you write, run, and debug your code with just a browser. You can create an AWS Cloud9 IDE in your
cluster's VPC and use the IDE to communicate with your cluster. For more information, see Creating an
Environment in AWS Cloud9.

When you configure kubectl for your AWS Cloud9 IDE, be sure to use AWS credentials that are
already mapped to your cluster's RBAC configuration, or add the IAM user or role that your IDE will
use to the RBAC configuration before you remove endpoint public access. For more information,
see Managing Users or IAM Roles for your Cluster (p. 116) and Unauthorized or Access Denied
(kubectl) (p. 180).

Amazon EKS Control Plane Logging

Amazon EKS control plane logging provides audit and diagnostic logs directly from the Amazon EKS
control plane to CloudWatch Logs in your account. These logs make it easy for you to secure and run
your clusters. You can select the exact log types you need, and logs are sent as log streams to a group for
each Amazon EKS cluster in CloudWatch.

You can start using Amazon EKS control plane logging by choosing which log types you want to enable
for each new or existing Amazon EKS cluster. You can enable or disable each log type on a per-cluster
basis using the AWS Management Console, AWS CLI (version 1.16.139 or higher), or through the Amazon
EKS API. When enabled, logs are automatically sent from the Amazon EKS cluster to CloudWatch Logs in
the same account.

When you use Amazon EKS control plane logging, you're charged standard Amazon EKS pricing for each
cluster that you run. You are charged the standard CloudWatch Logs data ingestion and storage costs for
any logs sent to CloudWatch Logs from your clusters. You are also charged for any AWS resources, such
as Amazon EC2 instances or Amazon EBS volumes, that you provision as part of your cluster.

The following cluster control plane log types are available. Each log type corresponds to a component
of the Kubernetes control plane. To learn more about these components, see Kubernetes Components in
the Kubernetes documentation.

38

https://aws.amazon.com/blogs/compute/enabling-dns-resolution-for-amazon-eks-cluster-endpoints/
https://aws.amazon.com/blogs/compute/enabling-dns-resolution-for-amazon-eks-cluster-endpoints/
https://aws.amazon.com/quickstart/architecture/linux-bastion/
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html
https://kubernetes.io/docs/concepts/overview/components/

Amazon EKS User Guide
Enabling and Disabling Control Plane Logs

« Kubernetes API server component logs (api) — Your cluster's API server is the control plane
component that exposes the Kubernetes API. For more information, see kube-apiserver in the
Kubernetes documentation.

 Audit (audit) — Kubernetes audit logs provide a record of the individual users, administrators,
or system components that have affected your cluster. For more information, see Auditing in the
Kubernetes documentation.

o Authenticator (authenticator) — Authenticator logs are unique to Amazon EKS. These logs
represent the control plane component that Amazon EKS uses for Kubernetes Role Based Access
Control (RBAC) authentication using IAM credentials. For more information, see Managing Cluster
Authentication (p. 105).

« Controller manager (controllerManager) — The controller manager manages the core control
loops that are shipped with Kubernetes. For more information, see kube-controller-manager in the
Kubernetes documentation.

« Scheduler (scheduler) — The scheduler component manages when and where to run pods in your
cluster. For more information, see kube-scheduler in the Kubernetes documentation.

Enabling and Disabling Control Plane Logs

By default, cluster control plane logs aren't sent to CloudWatch Logs. You must enable each log type
individually to send logs for your cluster. CloudWatch Logs ingestion, archive storage, and data scanning
rates apply to enabled control plane logs. For more information, see CloudWatch Pricing.

When you enable a log type, the logs are sent with a log verbosity level of 2.

To enable or disable control plane logs with the console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
2. Choose the name of the cluster to display your cluster information.

3. Under Logging, choose Update.
4

For each individual log type, choose whether the log type should be Enabled or Disabled. By
default, each log type is Disabled.

5. Choose Update to finish.

To enable or disable control plane logs with the AWS CLI

1. Check your AWS CLI version with the following command.

aws --version

If your AWS CLI version is below 1.16.139, you must first update to the latest version. To install or
upgrade the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line
Interface User Guide.

2. Update your cluster's control plane log export configuration with the following AWS CLI command.
Substitute your cluster name and desired endpoint access values.

Note
The following command sends all available log types to CloudWatch Logs.

aws eks --region us-west-2 update-cluster-config --name prod \
--logging '{"clusterLogging":[{"types":
["api","audit","authenticator","controllerManager", "scheduler"], "enabled":true}]}"'

39

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
http://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon EKS User Guide
Viewing Cluster Control Plane Logs

Output:
{
"update": {
"id": "883405c8-65c6-4758-8cee-2a7¢c1340a6d9",
"status": "InProgress",

"type": "LoggingUpdate",
"params": [
{
"type": "ClusterLogging",
"value": "{\"clusterLogging\":[{\"types\":[\"api\",\"audit\",
\"authenticator\",\"controllerManager\", \"scheduler\"], \"enabled\":true}]}"
}
1,
"createdAt": 1553271814.684,
"errors": []

}

Monitor the status of your log configuration update with the following command, using the cluster
name and the update ID that were returned by the previous command. Your update is complete
when the status appears as Successful.

aws eks --region us-west-2 describe-update --name prod --update-
id 883405c8-65c6-4758-8cee-2a7c1340a6d9

Output:
{
"update": {
"id": "883405c8-65c6-4758-8cee-2a7c1340a6d9",
"status": "Successful",

"type": "LoggingUpdate",
"params": [
{
"type": "ClusterLogging",
"value": "{\"clusterLogging\":[{\"types\":[\"api\",\"audit\",
\"authenticator\",\"controllerManager\", \"scheduler\"], \"enabled\":true}]}"
}
1,
"createdAt": 1553271814.684,
"errors": []

Viewing Cluster Control Plane Logs

After you have enabled any of the control plane log types for your Amazon EKS cluster, you can view
them on the CloudWatch console.

To learn more about viewing, analyzing, and managing logs in CloudWatch, see the Amazon CloudWatch
Logs User Guide.

To view your cluster control plane logs on the CloudWatch console

Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/home#logs:prefix=/
aws/eks. This URL displays your current available log groups and filters them with the /aws/eks
prefix.

40

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://console.aws.amazon.com/cloudwatch/home#logs:prefix=/aws/eks
https://console.aws.amazon.com/cloudwatch/home#logs:prefix=/aws/eks

Amazon EKS User Guide
Deleting a Cluster

2. Choose the cluster that you want to view logs for. The log group name format is /aws/
eks/cluster-name/cluster.

3. Choose the log stream to view. The following list describes the log stream name format for each log
type.
Note
As log stream data grows, the log stream names are rotated. When multiple log streams

exist for a particular log type, you can view the latest log stream by looking for the log
stream name with the latest Last Event Time.

« Kubernetes API server component logs (api) - kube-apiserver-nnn...

o Audit (audit) - kube-apiserver-audit-nnn...

Authenticator (authenticator) — authenticator-nnn...

Controller manager (controllerManager) — kube-apiserver-nnn...

Scheduler (scheduler) — kube-apiserver-nnn. ..

Deleting a Cluster

When you're done using an Amazon EKS cluster, you should delete the resources associated with it so
that you don't incur any unnecessary costs.

Important

If you have active services in your cluster that are associated with a load balancer, you must
delete those services before deleting the cluster so that the load balancers are deleted properly.
Otherwise, you can have orphaned resources in your VPC that prevent you from being able to
delete the VPC.

Choose the tab below that corresponds to your preferred cluster deletion method.
eksctl
To delete an Amazon EKS cluster and worker nodes with eksctl

This procedure assumes that you have installed eksctl, and that your eksct1 version is at least
0.1.37. You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksct1, see Installing or Upgrading
eksctl (p. 120).

Note
This procedure only works for clusters that were created with eksctl.

1. List all services running in your cluster.

kubectl get svc --all-namespaces

2. Delete any services that have an associated EXTERNAL-IP value. These services are fronted by
an Elastic Load Balancing load balancer, and you must delete them in Kubernetes to allow the
load balancer and associated resources to be properly released.

kubectl delete svc service-name

3. Delete the cluster and its associated worker nodes with the following command, substituting
the red text with your cluster name.

41

Amazon EKS User Guide
Deleting a Cluster

eksctl delete cluster --name prod

Output:

[#] wusing region us-west-2

[#] deleting EKS cluster "prod"

[#] will delete stack "eksctl-prod-nodegroup-standard-workers"

[#] waiting for stack "eksctl-prod-nodegroup-standard-workers" to get deleted

[#] will delete stack "eksctl-prod-cluster"

[#] the following EKS cluster resource(s) for "prod" will be deleted: cluster. If
in doubt, check CloudFormation console

AWS Management Console

To delete an Amazon EKS cluster with the AWS Management Console

1.

AWS CLI

List all services running in your cluster.

kubectl get svc --all-namespaces

Delete any services that have an associated EXTERNAL-IP value. These services are fronted by
an Elastic Load Balancing load balancer, and you must delete them in Kubernetes to allow the
load balancer and associated resources to be properly released.

kubectl delete svc service-name

Delete the worker node AWS CloudFormation stack.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

b. Select the worker node stack to delete and then choose Actions, Delete Stack.
c. On the Delete Stack confirmation screen, choose Yes, Delete.
Delete the cluster.

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
b. Select the cluster to delete and choose Delete.

c. Onthe delete cluster confirmation screen, choose Delete.

(Optional) Delete the VPC AWS CloudFormation stack.

a. Select the VPC stack to delete and choose Actions and then Delete Stack.
b. On the Delete Stack confirmation screen, choose Yes, Delete.

To delete an Amazon EKS cluster with the AWS CLI

1.

List all services running in your cluster.

kubectl get svec --all-namespaces

Delete any services that have an associated EXTERNAL-IP value. These services are fronted by
an Elastic Load Balancing load balancer, and you must delete them in Kubernetes to allow the
load balancer and associated resources to be properly released.

42

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/eks/home#/clusters

Amazon EKS User Guide
Kubernetes Versions

kubectl delete svc service-name

3. Delete the worker node AWS CloudFormation stack.

a. List your available AWS CloudFormation stacks with the following command. Find the
worker node template name in the resulting output.

aws cloudformation list-stacks --query StackSummaries[].StackName

b. Delete the worker node stack with the following command, substituting the red text with
your worker node stack name.

aws cloudformation delete-stack --stack-name worker-node-stack

4. Delete the cluster with the following command, substituting the red text with your cluster
name.

aws eks delete-cluster --name my-cluster

5. (Optional) Delete the VPC AWS CloudFormation stack.

a. List your available AWS CloudFormation stacks with the following command. Find the VPC
template name in the resulting output.

aws cloudformation list-stacks --query StackSummaries[].StackName

b. Delete the VPC stack with the following command, substituting the red text with your VPC
stack name.

aws cloudformation delete-stack --stack-name my-vpc-stack

Amazon EKS Kubernetes Versions

The Kubernetes project is rapidly evolving with new features, design updates, and bug fixes. The
community releases new Kubernetes minor versions, such as 1.13, as generally available approximately
every three months, and each minor version is supported for approximately one year after it is first
released.

Available Amazon EKS Kubernetes Versions

The following Kubernetes versions are currently available for new clusters in Amazon EKS:

« 1.13.7
« 1.12.6
« 1.11.8

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer create
new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes version 1.10 will
eventually be automatically updated to the latest available platform version of Kubernetes
version 1.11. For more information, see Amazon EKS Version Deprecation (p. 44).

43

Amazon EKS User Guide
Kubernetes 1.13

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service interruption.
For more information, see Updating an Amazon EKS Cluster Kubernetes Version (p. 26).

Unless your application requires a specific version of Kubernetes, we recommend that you choose the
latest available Kubernetes version supported by Amazon EKS for your clusters. As new Kubernetes
versions become available in Amazon EKS, we recommend that you proactively update your clusters to
use the latest available version. For more information, see Updating an Amazon EKS Cluster Kubernetes
Version (p. 26).

Kubernetes 1.13

The following features are now supported in Kubernetes 1.13 Amazon EKS clusters:

« The PodSecurityPolicy admission controller is now enabled. This admission controller allows
fine-grained control over pod creation and updates. For more information, see Pod Security
Policy (p. 122).

« Amazon ECR interface VPC endpoints (AWS PrivateLink) are supported. When you enable these
endpoints in your VPC, all network traffic between your VPC and Amazon ECR is restricted to the
Amazon network. For more information, see Amazon ECR Interface VPC Endpoints (AWS PrivateLink)
in the Amazon Elastic Container Registry User Guide.

« The DryRun feature is in beta in Kubernetes 1.13 and is enabled by default for Amazon EKS clusters.
For more information, see Dry run in the Kubernetes documentation.

o The TaintBasedEvictions feature is in beta in Kubernetes 1.13 and is enabled by default
for Amazon EKS clusters. For more information, see Taint based Evictions in the Kubernetes
documentation.

« Raw block volume support is in beta in Kubernetes 1.13 and is enabled by default for Amazon EKS
clusters. This is accessible via the volumeDevices container field in pod specs, and the volumeMode
field in persistent volume and persistent volume claim definitions. For more information, see Raw
Block Volume Support in the Kubernetes documentation.

« Node lease renewal is treated as the heartbeat signal from the node, in addition to its NodeStatus
update. This reduces load on the control plane for large clusters. For more information, see https://
github.com/kubernetes/kubernetes/pull/69241.

For the complete Kubernetes 1.13 changelog, see https://github.com/kubernetes/kubernetes/blob/
master/CHANGELOG-1.13.md

Amazon EKS Version Deprecation

In line with the Kubernetes community support for Kubernetes versions, Amazon EKS is committed to
running at least three production-ready versions of Kubernetes at any given time, with a fourth version
in deprecation.

We will announce the deprecation of a given Kubernetes minor version at least 60 days before the
deprecation date. Because of the Amazon EKS qualification and release process for new Kubernetes
versions, the deprecation of a Kubernetes version on Amazon EKS will be on or after the date the
Kubernetes project stops supporting the version upstream.

On the deprecation date, Amazon EKS clusters running the version targeted for deprecation will

begin to be updated to the next Amazon EKS-supported version of Kubernetes. This means that if the
deprecated version is 1.10, clusters will eventually be automatically updated to version 1.11. If a cluster
is automatically updated by Amazon EKS, you must also update the version of your worker nodes after
the update is complete. For more information, see Worker Node Updates (p. 64).

Kubernetes supports compatibility between masters and workers for at least 2 minor versions, so 1.10
workers will continue to operate when orchestrated by a 1.11 control plane. For more information, see
Kubernetes Version and Version Skew Support Policy in the Kubernetes documentation.

44

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://kubernetes.io/docs/reference/using-api/api-concepts/#dry-run
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#taint-based-evictions
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#raw-block-volume-support
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#raw-block-volume-support
https://github.com/kubernetes/kubernetes/pull/69241
https://github.com/kubernetes/kubernetes/pull/69241
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.13.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.13.md
https://kubernetes.io/docs/setup/version-skew-policy/

Amazon EKS User Guide
Platform Versions

Amazon EKS platform versions represent the capabilities of the cluster control plane, such as which
Kubernetes API server flags are enabled, as well as the current Kubernetes patch version. Each
Kubernetes minor version has one or more associated Amazon EKS platform versions. The platform
versions for different Kubernetes minor versions are independent.

When a new Kubernetes minor version is available in Amazon EKS, such as 1.13, the initial Amazon EKS
platform version for that Kubernetes minor version starts at eks . 1. However, Amazon EKS releases new
platform versions periodically to enable new Kubernetes control plane settings and to provide security
fixes.

When new Amazon EKS platform versions become available for a minor version:

o The Amazon EKS platform version number is incremented (eks .n+1).

« Amazon EKS automatically upgrades all existing clusters to the latest Amazon EKS platform version
for their corresponding Kubernetes minor version.

« Amazon EKS might publish a new worker AMI with a corresponding patch version. However, all patch
versions are compatible between the EKS control plane and worker AMis for a given Kubernetes minor
version.

New Amazon EKS platform versions don't introduce breaking changes or cause service interruptions.

Note

Automatic upgrades of existing Amazon EKS platform versions are rolled out incrementally.
The roll-out process might take some time. If you need the latest Amazon EKS platform version
features immediately, you should create a new Amazon EKS cluster.

Clusters are always created with the latest available Amazon EKS platform version (eks . n) for the
specified Kubernetes version. If you update your cluster to a new Kubernetes minor version, your cluster
receives the current Amazon EKS platform version for the Kubernetes minor version that you updated to.

The current and recent Amazon EKS platform versions are described in the following tables.

Kubernetes version 1.13

Kubernetes Amazon EKS Enabled Release Notes
Version Platform Version Admission
Controllers
1.13.8 eks.2 NamespaceLifecyclew platform
LimitRanger, version updating

ServiceAccount, Amazon EKS
DefaultStorageClKsbernetes 1.13
ResourceQuota, clusterstoa
DefaultToleratiopsteheddsrsion of
NodeRestriction, 1.13.8 to address
MutatingAdmissiohWEbiblik, 11247
ValidatingAdmissdotiWebhook,
PodSecurityPolic§VE-2019-11249.

1.13.7 eks.1 NamespaceLifecyclhdtial release
LimitRanger, of Kubernetes
ServiceAccount, 1.13 for Amazon

45

https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM

Amazon EKS User Guide
Kubernetes version 1.12

Kubernetes
Version

Amazon EKS
Platform Version

Enabled Release Notes
Admission
Controllers

DefaultStorageClEKS, For more
ResourceQuota, information,
DefaultToleratiossxohndsetes
NodeRestriction, 1.13 (p. 44).
MutatingAdmissionWebhook,
ValidatingAdmissionWebhook,
PodSecurityPolicy

Kubernetes version 1.12

Kubernetes
Version

1.12.10

1.12.6

1.12.6

Amazon EKS
Platform Version

eks.3

eks.2

eks.1

Enabled Release Notes
Admission
Controllers

NamespaceLifecycllew platform
LimitRanger, version updating
ServiceAccount, Amazon EKS
DefaultStorageClKsbernetes 1.12
ResourceQuota, clusterstoa
DefaultToleratiopsteheddsrsion of
NodeRestriction, 1.12.10 to address
MutatingAdmissiohWEbibldk, 11247
ValidatingAdmissdothWebhook
CVE-2019-11249.

NamespaceLifecyclew platform
LimitRanger, version to support
ServiceAccount, custom DNS
DefaultStorageClaames in the
ResourceQuota, Kubelet certificate
DefaultToleratioaisedopdaye eted
NodeRestriction, performance. This
MutatingAdmissiofivesohbuag,that
ValidatingAdmis sdausédhioiier
node Kubelet
daemons to
request a new
certificate every
few seconds.

NamespaceLifecyclhitial release of
LimitRanger, Kubernetes 1.12
ServiceAccount, for Amazon EKS.
DefaultStorageClass,
ResourceQuota,
DefaultTolerationSeconds,
NodeRestriction,
MutatingAdmissionWebhook,
ValidatingAdmissionWebhook

46

https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM

Amazon EKS User Guide
Kubernetes version 1.11

Kubernetes version 1.11

Kubernetes Amazon EKS Enabled Release Notes
Version Platform Version Admission
Controllers
1.11.10 eks.4 NamespaceLifecyclew platform
LimitRanger, version updating

ServiceAccount, Amazon EKS
DefaultStorageClKebernetes 1.11
ResourceQuota, clusterstotoa
DefaultToleratiopsteheddsrsion of
NodeRestriction, 1.11.10 to address
MutatingAdmissiohWEbiblik, 11247
ValidatingAdmissdothWebhook
CVE-2019-11249.

1.11.8 eks.3 NamespaceLifecycllew platform
LimitRanger, version to support
ServiceAccount, custom DNS
DefaultStorageClaames in the
ResourceQuota, Kubelet certificate
DefaultToleratioasetopdsye etcd
NodeRestriction, performance.
MutatingAdmissionWebhook,
ValidatingAdmissionWebhook

1.11.8 eks.2 NamespaceLifecycllew platform
LimitRanger, version updating
ServiceAccount, Amazon EKS
DefaultStorageClKebernetes
ResourceQuota, 1.11 clusters
DefaultToleratiotspatohdsyel
NodeRestriction, 1.11.8 to address
MutatingAdmissiohWEBHblHk,1002100.
ValidatingAdmissionWebhook

1.11.5 eks.1 NamespaceLifecyclhitial release of
LimitRanger, Kubernetes 1.11
ServiceAccount, for Amazon EKS.
DefaultStorageClass,
ResourceQuota,
DefaultTolerationSeconds,
NodeRestriction,
MutatingAdmissionWebhook,
ValidatingAdmissionWebhook

Kubernetes version 1.10

Important

Kubernetes version 1.10 is no longer supported on Amazon EKS. You can no longer create
new 1.10 clusters, and all existing Amazon EKS clusters running Kubernetes version 1.10 will
eventually be automatically updated to the latest available platform version of Kubernetes
version 1.11. For more information, see Amazon EKS Version Deprecation (p. 44).

47

https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://discuss.kubernetes.io/t/kubernetes-security-announcement-v1-11-8-1-12-6-1-13-4-released-to-address-medium-severity-cve-2019-1002100/5147

Amazon EKS User Guide
Kubernetes version 1.10

Please update any 1.10 clusters to version 1.11 or higher in order to avoid service interruption.
For more information, see Updating an Amazon EKS Cluster Kubernetes Version (p. 26).

Kubernetes Amazon EKS Enabled Release Notes
Version Platform Version Admission
Controllers
1.10.13 eks.5 NamespaceLifecyclew platform
LimitRanger, version to support

ServiceAccount, custom DNS
DefaultStorageClaames in the
ResourceQuota, Kubelet certificate
DefaultToleratioaiseopdaye eted
NodeRestriction, performance.
MutatingAdmissiodpdbtetbitg
ValidatingAdmiss@bhWebkook:"v1.10.13-
eks-4a9600"
to address
CVE-2019-11247
and
CVE-2019-11249.

1.10.13 eks.4 NamespaceLifecycllew platform
LimitRanger, version updating
ServiceAccount, Kubernetes
DefaultStorageCltmspatch level
ResourceQuota, 1.10.13anda
DefaultToleratiopstebdodeldress
NodeRestriction, CVE-2019-1002100.
MutatingAdmissionWebhook,
ValidatingAdmissionWebhook

1.10.11 eks.3 NamespaceLifecycllew platform
LimitRanger, version updating
ServiceAccount, Kubernetes
DefaultStorageCltespatch level
ResourceQuota, @ 1.10.11 to address
DefaultToleratiofhgEeiids, 1002105.
NodeRestriction,
MutatingAdmissionWebhook,
ValidatingAdmissionWebhook

1.10.3 eks.2 NamespaceLifecycd éddded support
LimitRanger, for Kubernetes
ServiceAccount, aggregation

DefaultStorageClasdsyer.

ResourceQuota, « Added support
DefaultTolerationFaeRudernetes
NodeRestriction, Horizontal Pod

MutatingAdmissionWehhoeker
ValidatingAdmiss iqpm_hook

¢ Kubernetes
Metrics Server
0.3.0 or greater
is compatible
with EKS

48

https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://discuss.kubernetes.io/t/kubernetes-security-announcement-v1-11-8-1-12-6-1-13-4-released-to-address-medium-severity-cve-2019-1002100/5147
https://aws.amazon.com/security/security-bulletins/AWS-2018-020/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Amazon EKS User Guide
Kubernetes version 1.10

Kubernetes
Version

1.10.3

Amazon EKS
Platform Version

eks.1

Enabled Release Notes
Admission
Controllers

platform version
eks.2.

NamespaceLifecyclhitial launch of
LimitRanger, Amazon EKS.
ServiceAccount,
DefaultStorageClass,
ResourceQuota,
DefaultTolerationSeconds,
NodeRestriction

49

Amazon EKS User Guide
Amazon EKS-Optimized AMI

Worker Nodes

Worker machines in Kubernetes are called nodes. Amazon EKS worker nodes run in your AWS account
and connect to your cluster's control plane via the cluster APl server endpoint.

Amazon EKS worker nodes are standard Amazon EC2 instances, and you are billed for them based on
normal EC2 prices. For more information, see Amazon EC2 Pricing.

By default, Amazon EKS provides AWS CloudFormation templates to spin up worker nodes in your
Amazon EKS cluster. This AMI is built on top of Amazon Linux 2, and is configured to serve as the base
image for Amazon EKS worker nodes. The AMI is configured to work with Amazon EKS out of the box,
and it includes Docker, kubelet, and the AWS IAM Authenticator. The AMI also contains a specialized
bootstrap script that allows it to discover and connect to your cluster's control plane automatically.

Note

You can track security or privacy events for Amazon Linux 2 at the Amazon Linux Security Center
or subscribe to the associated RSS feed. Security and privacy events include an overview of the
issue, what packages are affected, and how to update your instances to correct the issue.

The AWS CloudFormation worker node template launches your worker nodes with specialized Amazon
EC2 user data. This user data triggers a specialized bootstrap script that allows your worker nodes to
discover and connect to your cluster's control plane automatically. For more information, see Launching
Amazon EKS Worker Nodes (p. 57).

For more information about worker nodes from a general Kubernetes perspective, see Nodes in the
Kubernetes documentation.

Topics
« Amazon EKS-Optimized AMI (p. 50)
« Amazon EKS Partner AMils (p. 57)
« Launching Amazon EKS Worker Nodes (p. 57)
« Worker Node Updates (p. 64)

Amazon EKS-Optimized AMI

The Amazon EKS-optimized AMI is built on top of Amazon Linux 2, and is configured to serve as the base
image for Amazon EKS worker nodes. The AMI is configured to work with Amazon EKS out of the box,
and it includes Docker, kubelet, and the AWS IAM Authenticator.

Note

You can track security or privacy events for Amazon Linux 2 at the Amazon Linux Security Center
or subscribe to the associated RSS feed. Security and privacy events include an overview of the
issue, what packages are affected, and how to update your instances to correct the issue.

The AMI IDs for the latest Amazon EKS-optimized AMI (with and without GPU support (p. 53)) are
shown in the following table.

Note

The Amazon EKS-optimized AMI with GPU support only supports P2 and P3 instance types. Be
sure to specify these instance types in your worker node AWS CloudFormation template. By
using the Amazon EKS-optimized AMI with GPU support, you agree to NVIDIA's end user license
agreement (EULA).

50

https://aws.amazon.com/ec2/pricing/
https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://kubernetes.io/docs/concepts/architecture/nodes/
https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://www.nvidia.com/en-us/about-nvidia/eula-agreement/
https://www.nvidia.com/en-us/about-nvidia/eula-agreement/

Amazon EKS User Guide
Amazon EKS-Optimized AMI

Kubernetes version 1.13.8

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong) (ap-
east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)

EU (Paris) (eu-west-3)

EU (Stockholm) (eu-north-1)

Kubernetes version 1.12.10

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong) (ap-
east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Amazon EKS-optimized AMI
ami-027683840ad78d833

ami-0d3998d69ebe9b214

ami-00b95829322267382

ami-03f8634a8fd592414

ami-0062e5b0411e77cla

ami-0a67c71d2ab43d36f

ami-0dé66d2fefbc86831a

ami-06206d907abb34bbc

ami-09f2d86£2d8c4£f77d

ami-038bd8d3a2345061f

ami-0199284372364b02a
ami-0£f454b09349248e29
ami-00b44348ab3eb2c9f

ami-02218be9004537a65

Amazon EKS-optimized AMI
ami-Oebblc51e5fe9c376

ami-01e370£796735b244

ami-0b520e822d42998cl

ami-0aa0O7b9e8bfcdaaff

ami-03b7b0e3088a72394

with GPU support
ami-0af8403c143£fd4a07

ami-0484012ada3522476

ami-0d24da600cc96aeébb

ami-080eb165234752969

ami-010dbb7183ab64b39

ami-069303796840£8155

ami-04£f71dc710ff5baf4

ami-0213fc532blc2e05f

ami-01fc0a4c67£82532b

ami-07b7cbb235789cc31

ami-00bfeece5b673b69f
ami-Obabebc79dbf6016c
ami-03136b5b83c5b6lba

ami-05782laceal5cla9d98

with GPU support
ami-0b42bfc7af8bb3abce

ami-0eb0119£f55d589a03

ami-0c9156d7fcd3c2948

ami-0a5e7de0e5d22a988

ami-0clbc87££613a979b

51

Amazon EKS User Guide

Amazon EKS-Optimized AMI

Region

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)

EU (Paris) (eu-west-3)

EU (Stockholm) (eu-north-1)

Kubernetes version 1.11.10

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong) (ap-
east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)

Amazon EKS-optimized AMI

ami-0£f554256ac7b33081

ami-066a40£5£f0e0b90£f4

ami-06a42a7479836d402

ami-0£93997£60ca40d26

ami-04341c15c2£941589

ami-018b4a3£f81f517183
ami-0£d0b45d54£f80a0e9
ami-0b12420c7£7281432

ami-0lclb0b8dcbd02bll

Amazon EKS-optimized AMI
ami-0e565fflccb9b6979

ami-08571cé6ceeladbb62

ami-0566833f0c8e9031le

ami-0e2e431905d176277

ami-073c3d075aeb53d1f

ami-0644b094efc34d888

ami-0ab0067299faa5229

ami-087£58c635bb8283b

ami-06caef7a88fd74af2

ami-099b3£8db68693895

ami-06b60c5852910e7b5

with GPU support

ami-0e2£f87975£f5aa9908

ami-08101c357b41e9f9a

ami-0420c66a82472f4b2

ami-04a085528a6af6499

ami-09c45f4e40a56254b

ami-04668c090ff8c1£f50
ami-0b925567bd252e74c
ami-0£f975ac243bcd0dal

ami-093da2874a5426ce3

with GPU support
ami-0£f9e62727a55£68d3

ami-0c3d92683a7946ac3

ami-058b22acd515ec20b

ami-Obaf9ac8446e87fb5

ami-0c709282458d1114c

ami-023f507ec007de487

ami-0ccbbe6530310b01d

ami-0341435cf966cb837

ami-0987b07bd338£97db

ami-060£13bd7397£782d

ami-0d84963dfda5af073

52

Amazon EKS User Guide
Amazon EKS-Optimized AMI Build Scripts

Region Amazon EKS-optimized AMI with GPU support

EU (London) (eu-west-2) ami-0b56c1f£39e4bleb8e ami-0189e53a00d37a0b6

EU (Paris) (eu-west-3) ami-036237d1951bfeabc ami-Obaea83f5f5d2abfe

EU (Stockholm) (eu-north-1) H ami-0612e10dfe00c5ff6 ami-0d5b7823e58094232
Important

These AMIs require the latest AWS CloudFormation worker node template. You can't use these
AMIs with a previous version of the worker node template; they will fail to join your cluster. Be
sure to upgrade any existing AWS CloudFormation worker stacks with the latest template (URL
shown below) before you attempt to use these AMIs.

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
nodegroup.yaml

The AWS CloudFormation worker node template launches your worker nodes with Amazon EC2 user data
that triggers a specialized bootstrap script. This script allows your worker nodes to discover and connect
to your cluster's control plane automatically. For more information, see Launching Amazon EKS Worker
Nodes (p. 57).

Amazon EKS-Optimized AMI Build Scripts

Amazon Elastic Kubernetes Service (Amazon EKS) has open-sourced the build scripts that are used to
build the Amazon EKS-optimized AMI. These build scripts are now available on GitHub.

The Amazon EKS-optimized AMI is built on top of Amazon Linux 2, specifically for use as a worker node
in Amazon EKS clusters. You can use this repository to view the specifics of how the Amazon EKS team
configures kubelet, Docker, the AWS IAM Authenticator for Kubernetes, and more.

The build scripts repository includes a HashiCorp Packer template and build scripts to generate an AMI.
These scripts are the source of truth for Amazon EKS-optimized AMI builds, so you can follow the GitHub
repository to monitor changes to our AMls. For example, perhaps you want your own AMI to use the
same version of Docker that the EKS team uses for the official AMI.

The GitHub repository also contains the specialized bootstrap script that runs at boot time to configure
your instance's certificate data, control plane endpoint, cluster name, and more.

Additionally, the GitHub repository contains our Amazon EKS worker node AWS CloudFormation
templates. These templates make it easier to spin up an instance running the Amazon EKS-optimized
AMI and register it with a cluster.

For more information, see the repositories on GitHub at https://github.com/awslabs/amazon-eks-ami.

Amazon EKS-Optimized AMI with GPU Support

The Amazon EKS-optimized AMI with GPU support is built on top of the standard Amazon EKS-
optimized AMI, and is configured to serve as an optional image for Amazon EKS worker nodes to support
GPU workloads.

In addition to the standard Amazon EKS-optimized AMI configuration, the GPU AMI includes the
following:

« NVIDIA drivers
o The nvidia-docker2 package

53

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami
https://www.packer.io/
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami

Amazon EKS User Guide
Amazon EKS-Optimized AMI with GPU Support

e The nvidia-container-runtime (as the default runtime)

The AMI IDs for the latest Amazon EKS-optimized AMI with GPU support are shown in the following
table.

Note

The Amazon EKS-optimized AMI with GPU support only supports P2 and P3 instance types. Be
sure to specify these instance types in your worker node AWS CloudFormation template. By
using the Amazon EKS-optimized AMI with GPU support, you agree to NVIDIA's end user license

agreement (EULA).

Kubernetes version 1.13.8

Region

US East (Ohio) (us-east-2)

US East (N. Virginia) (us-east-1)

US West (Oregon) (us-west-2)

Asia Pacific (Hong Kong) (ap-east-1)
Asia Pacific (Mumbai) (ap-south-1)
Asia Pacific (Tokyo) (ap-northeast-1)
Asia Pacific (Seoul) (ap-northeast-2)
Asia Pacific (Singapore) (ap-southeast-1)
Asia Pacific (Sydney) (ap-southeast-2)
EU (Frankfurt) (eu-central-1)

EU (Ireland) (eu-west-1)

EU (London) (eu-west-2)

EU (Paris) (eu-west-3)

EU (Stockholm) (eu-north-1)

Kubernetes version 1.12.10

Region

US East (Ohio) (us-east-2)

US East (N. Virginia) (us-east-1)

US West (Oregon) (us-west-2)

Asia Pacific (Hong Kong) (ap-east-1)
Asia Pacific (Mumbai) (ap-south-1)
Asia Pacific (Tokyo) (ap-northeast-1)

Asia Pacific (Seoul) (ap-northeast-2)

Amazon EKS-optimized AMI with GPU support

ami-0af8403c143fd4a07

ami-0484012ada3522476

ami-0d24da600cc96ae6bb

ami-080eb165234752969

ami-010dbb7183ab64b39

ami-069303796840£8155

ami-04£f71dc710ff5baf4

ami-0213fc532blc2e05f

ami-01fc0a4c67£82532b

ami-07b7cbb235789cc31

ami-00bfeece5b673b69f

ami-Obabebc79dbf6016c

ami-03136b5b83c5b6lba

ami-05782laceal5cla98

Amazon EKS-optimized AMI with GPU support

ami-0b42bfc7af8bb3abc

ami-0eb0119£f55d589a03

ami-0c9156d7£fcd3c2948

ami-0a5e7de0e5d22a988

ami-0clbc87££613a979b

ami-0e2£f87975£f5aa9908

ami-08101c¢357b41e9f9%a

54

https://www.nvidia.com/en-us/about-nvidia/eula-agreement/
https://www.nvidia.com/en-us/about-nvidia/eula-agreement/

Amazon EKS User Guide
Amazon EKS-Optimized AMI with GPU Support

Region

Asia Pacific (Singapore) (ap-southeast-1)
Asia Pacific (Sydney) (ap-southeast-2)
EU (Frankfurt) (eu-central-1)

EU (Ireland) (eu-west-1)

EU (London) (eu-west-2)

EU (Paris) (eu-west-3)

EU (Stockholm) (eu-north-1)

Kubernetes version 1.11.10

Region

US East (Ohio) (us-east-2)

US East (N. Virginia) (us-east-1)

US West (Oregon) (us-west-2)

Asia Pacific (Hong Kong) (ap-east-1)
Asia Pacific (Mumbai) (ap-south-1)
Asia Pacific (Tokyo) (ap-northeast-1)
Asia Pacific (Seoul) (ap-northeast-2)
Asia Pacific (Singapore) (ap-southeast-1)
Asia Pacific (Sydney) (ap-southeast-2)
EU (Frankfurt) (eu-central-1)

EU (Ireland) (eu-west-1)

EU (London) (eu-west-2)

EU (Paris) (eu-west-3)

EU (Stockholm) (eu-north-1)

Important

Amazon EKS-optimized AMI with GPU support

ami-0420c66a82472f4b2

ami-04a085528a6af6499

ami-09c45f4e40a56254b

ami-04668c090£f£f8c1£f50

ami-0b925567bd252e74c

ami-0f975ac243bcd0da0

ami-093da2874a5426ce3

Amazon EKS-optimized AMI with GPU support

ami-0£9e62727a55£68d3

ami-0c3d92683a7946ac3

ami-058b22acd515ec20b

ami-Obaf9ac8446e87£fb5

ami-0c709282458d1114c

ami-023f507ec007de487

ami-O0ccbbe6530310b01d

ami-0341435cf966cb837

ami-0987b07bd338£97db

ami-060£13bd7397£782d

ami-0d84963dfda5af073

ami-0189e53a00d37a0bé

ami-Obaea83f5f5d2abfe

ami-0d5b7823e58094232

These AMIs require the latest AWS CloudFormation worker node template. You can't use these
AMs with a previous version of the worker node template; they will fail to join your cluster. Be
sure to upgrade any existing AWS CloudFormation worker stacks with the latest template (URL
shown below) before you attempt to use these AMls.

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
nodegroup.yaml

The AWS CloudFormation worker node template launches your worker nodes with Amazon EC2 user data
that triggers a specialized bootstrap script. This script allows your worker nodes to discover and connect

55

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh

Amazon EKS User Guide
Amazon EKS-Optimized AMI with GPU Support

to your cluster's control plane automatically. For more information, see Launching Amazon EKS Worker
Nodes (p. 57).

After your GPU worker nodes join your cluster, you must apply the NVIDIA device plugin for Kubernetes
as a DaemonSet on your cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta/
nvidia-device-plugin.yml

You can verify that your nodes have allocatable GPUs with the following command:

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,GPU:.status.allocatable.nvidia
\.com/gpu"

Example GPU Manifest

This section provides an example pod manifest for you to test that your GPU workers are configured
properly.

Example Get nvidia-smi output

This example pod manifest launches a Cuda container that runs nvidia-smi on a worker node. Create a
file called nvidia-smi.yaml, copy and paste the following manifest into it, and save the file.

apiversion: vl
kind: Pod
metadata:

name: nvidia-smi

spec:

restartPolicy: OnFailure

containers:

- name: nvidia-smi
image: nvidia/cuda:9.2-devel
args:

- "nvidia-smi"
resources:
limits:
nvidia.com/gpu: 1

Apply the manifest with the following command:

kubectl apply -f nvidia-smi.yaml

After the pod has finished running, view its logs with the following command:

kubectl logs nvidia-smi

Output:

Mon Aug 6 20:23:31 2018

o +
| NVIDIA-SMI 396.26 Driver Version: 396.26

|--—--—— o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util Compute M. |
|===============================4======================+====================== |
| 0 Tesla V100-SXM2... On | 00000000:00:1C.0 Off | 0 |
| N/A 46C PO 47W / 300W | OMiB / 16160MiB | 0% Default |
o o o +

56

https://github.com/NVIDIA/k8s-device-plugin

Amazon EKS User Guide
Partner AMIs

| GPU PID Type Process name Usage

Amazon EKS Partner AMIs

In addition to the official Amazon EKS-optimized, Canonical has partnered with Amazon EKS to create
worker node AMIs that you can use in your clusters.

Canonical delivers a built-for-purpose Kubernetes Node OS image. This minimized Ubuntu image is
optimized for Amazon EKS and includes the custom AWS kernel that is jointly developed with AWS.
For more information, see Ubuntu and Amazon Elastic Kubernetes Service and Optimized Support for
Amazon EKS on Ubuntu 18.04.

Launching Amazon EKS Worker Nodes

This topic helps you to launch an Auto Scaling group of worker nodes that register with your Amazon
EKS cluster. After the nodes join the cluster, you can deploy Kubernetes applications to them.

If this is your first time launching Amazon EKS worker nodes, we recommend that you follow one of our
Getting Started with Amazon EKS (p. 3) guides instead. They provide complete end-to-end walkthroughs
for creating an Amazon EKS cluster with worker nodes.

Important
Amazon EKS worker nodes are standard Amazon EC2 instances, and you are billed for them
based on normal Amazon EC2 prices. For more information, see Amazon EC2 Pricing.

Choose the tab below that corresponds to your desired worker node creation method:
eksctl
To launch worker nodes with eksctl

This procedure assumes that you have installed eksct1, and that your eksctl version is at least
0.1.37.You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksct1, see Installing or Upgrading
eksctl (p. 120).

Note
This procedure only works for clusters that were created with eksctl.

« Create your worker node group with the following command. Substitute the red text with your
own values.

eksctl create nodegroup \
--cluster default \
--version auto \

--name standard-workers \
--node-type t3.medium \
--node-ami auto \

57

https://www.canonical.com/
https://cloud-images.ubuntu.com/aws-eks/
http://aws.amazon.com/blogs/opensource/optimized-support-amazon-eks-ubuntu-1804/
http://aws.amazon.com/blogs/opensource/optimized-support-amazon-eks-ubuntu-1804/
https://aws.amazon.com/ec2/pricing/

Amazon EKS User Guide
Launching Amazon EKS Worker Nodes

--nodes 3 \
--nodes-min 1 \
--nodes-max 4

Note
For more information on the available options for eksctl create nodegroup, see the
project README on GitHub or view the help page with the following command.

eksctl create nodegroup --help

Output:

[#] wusing region us-west-2
[#] will use version 1.12 for new nodegroup(s) based on control plane version
[#] nodegroup "standard-workers" will use
"ami-0923e4b35a30a5f53" [AmazonLinux2/1.12]
[#] 1 nodegroup (standard-workers) was included
[#] will create a CloudFormation stack for each of 1 nodegroups in cluster
"default"
[#] 1 task: { create nodegroup "standard-workers" }
[#] building nodegroup stack "eksctl-default-nodegroup-standard-workers"
[#] deploying stack "eksctl-default-nodegroup-standard-workers"
[#] adding role "arn:aws:iam::111122223333:role/eksctl-default-nodegroup-standard-
NodeInstanceRole-12C2J0814XSEE" to auth ConfigMap
[#] nodegroup "standard-workers" has 0 node(s)
[#] waiting for at least 1 node(s) to become ready in "standard-workers"
[#] nodegroup "standard-workers" has 3 node(s)
[#] node "ip-192-168-52-42.us-west-2.compute.internal" is ready
[#] node "ip-192-168-7-27.us-west-2.compute.internal" is not ready
[#] node "ip-192-168-76-138.us-west-2.compute.internal" is not ready
[#] created 1 nodegroup(s) in cluster "default"
[#] checking security group configuration for all nodegroups
[#] all nodegroups have up-to-date configuration

AWS Management Console

To launch your worker nodes with the AWS Management Console

These procedures have the following prerequisites:

vk W

You have created a VPC and security group that meet the requirements for an Amazon EKS
cluster. For more information, see Cluster VPC Considerations (p. 82) and Cluster Security
Group Considerations (p. 84). The Getting Started with Amazon EKS (p. 3) guide creates a
VPC that meets the requirements, or you can also follow Creating a VPC for Your Amazon EKS
Cluster (p. 80) to create one manually.

You have created an Amazon EKS cluster and specified that it use the VPC and security group that
meet the requirements of an Amazon EKS cluster. For more information, see Creating an Amazon
EKS Cluster (p. 20).

Wait for your cluster status to show as ACTIVE. If you launch your worker nodes before the
cluster is active, the worker nodes will fail to register with the cluster and you will have to
relaunch them.

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
From the navigation bar, select a Region that supports Amazon EKS.

Choose Create stack.

For Choose a template, select Specify an Amazon S3 template URL.

58

https://github.com/weaveworks/eksctl/blob/master/README.md
https://console.aws.amazon.com/cloudformation/

Amazon EKS User Guide
Launching Amazon EKS Worker Nodes

6.

Paste the following URL into the text area and choose Next.

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
nodegroup.yaml

Note

If you intend to only deploy worker nodes to private subnets, you should

edit this template in the AWS CloudFormation designer and modify the
AssociatePublicIpAddress parameter in the NodeLaunchConfig to be false.

AssociatePublicIpAddress: 'false'

On the Specify Details page, fill out the following parameters accordingly, and choose Next:

« Stack name - Choose a stack name for your AWS CloudFormation stack. For example, you can
call it <cluster-name>-worker-nodes.

o ClusterName - Enter the name that you used when you created your Amazon EKS cluster.

Important
This name must exactly match your Amazon EKS cluster name. Otherwise, your
worker nodes will be unable to join it.

« ClusterControlPlaneSecurityGroup - Enter the security group or groups that you used when
you created your Amazon EKS cluster. This AWS CloudFormation template creates a worker
node security group that allows traffic to and from the cluster control plane security group
specified.

Important

The worker node AWS CloudFormation template modifies the security group that
you specify here, so Amazon EKS strongly recommends that you use a dedicated
security group for each cluster control plane (one per cluster). If this security
group is shared with other resources, you might block or disrupt connections to those
resources.

« NodeGroupName - Enter a name for your node group. This name can be used later to
identify the Auto Scaling node group that is created for your worker nodes.

« NodeAutoScalingGroupMinSize — Enter the minimum number of nodes to which your worker
node Auto Scaling group can scale in.

« NodeAutoScalingGroupDesiredCapacity — Enter the desired number of nodes to scale to
when your stack is created.

« NodeAutoScalingGroupMaxSize — Enter the maximum number of nodes to which your
worker node Auto Scaling group can scale out. This value must be at least one node greater
than your desired capacity so that you can perform a rolling update of your worker nodes
without reducing your node count during the update.

« NodelnstanceType — Choose an instance type for your worker nodes. The instance type and
size that you choose determines how many IP addresses are available per worker node for the
containers in your pods. For more information, see IP Addresses Per Network Interface Per
Instance Type in the Amazon EC2 User Guide for Linux Instances.

Note

The supported instance types for the latest version of the Amazon VPC CNI plugin
for Kubernetes are shown here. You may need to update your CNI version to take
advantage of the latest supported instance types. For more information, see Amazon
VPC CNI Plugin for Kubernetes Upgrades (p. 98).

Important
Some instance types might not be available in all regions.

« Nodelmageld - Enter the current Amazon EKS worker node AMI ID for your Region. The AMI
IDs for the latest Amazon EKS-optimized AMI (with and without GPU support (p. 53))

59

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/release-1.5/pkg/awsutils/vpc_ip_resource_limit.go

Amazon EKS User Guide
Launching Amazon EKS Worker Nodes

Note

are shown in the following table. Be sure to choose the correct AMI ID for your desired
Kubernetes version and AWS region.

The Amazon EKS-optimized AMI with GPU support only supports P2 and P3
instance types. Be sure to specify these instance types in your worker node AWS
CloudFormation template. By using the Amazon EKS-optimized AMI with GPU
support, you agree to NVIDIA's end user license agreement (EULA).

Kubernetes version 1.13.8

Region

US East (Ohio) (us-
east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore)
(ap-southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Amazon EKS-optimized

AMI

ami-027683840ad78d833

ami-0d3998d69ebe9b214

ami-00b95829322267382

ami-03£8634a8£fd592414

ami-0062e5b041l1le77cla

ami-0a67c71d2ab43d36f

ami-0d66d2fefbc86831a

ami-06206d907abb34bbc

ami-09£f2d86£2d8c4£77d

ami-038bd8d3a2345061f

ami-0199284372364b02a
ami-0£f454b09349248e29
ami-00b44348ab3eb2c9f

ami-02218be9004537a65

with GPU support

ami-0af8403c143£fd4a07

ami-0484012ada3522476

ami-0d24da600cc96ae6b

ami-080eb165234752969

ami-010dbb7183ab64b39

ami-069303796840£8155

ami-04£f71dc710ff5baf4

ami-0213fc532blc2e05f

ami-01fc0a4c67£82532b

ami-07b7cbb235789¢cc31

ami-00bfeece5b673b69f
ami-Obabebc79dbf6016c
ami-03136b5b83c5b61ba

ami-05782laceal5cla9s8

60

https://www.nvidia.com/en-us/about-nvidia/eula-agreement/

Amazon EKS User Guide
Launching Amazon EKS Worker Nodes

Kubernetes version 1.12.10

Region

US East (Ohio) (us-
east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore)
(ap-southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Kubernetes version 1.11.10

Region

US East (Ohio) (us-
east-2)

US East (N. Virginia) (us-
east-1)

Amazon EKS-optimized

AMI

ami-0ebblc51e5fe9c376

ami-01e370£796735b244

ami-0b520e822d42998cl

ami-0aa07b9e8bfcdaaff

ami-03b7b0e3088a72394

ami-0£554256ac7b33081

ami-066a40f5f0e0b90f4

ami-06a42a7479836d402

ami-0£93997£60ca40d26

ami-04341c15¢2f941589

ami-018b4a3f81£f517183
ami-0£fd0b45d54£80a0e9
ami-0b12420c7£7281432

ami-01lclb0Ob8dcbd02bll

Amazon EKS-optimized
AMI

ami-0e565ff1ccb9b6979

ami-08571céceeladbbé2

with GPU support

ami-0b42bfc7af8bb3abce

ami-0eb0119£55d589a03

ami-0c9156d7fcd3c2948

ami-0a5e7de0e5d22a988

ami-0clbc87££613a979b

ami-0e2£87975£5aa9908

ami-08101c357b41e9f9%a

ami-0420c66a82472f4b2

ami-04a085528a6af6499

ami-09c45f4e40a56254b

ami-04668c090ff8c1£f50
ami-0b925567bd252e74c
ami-0f975ac243bcd0dal

ami-093da2874a5426ce3

with GPU support

ami-0£9e62727a55£68d3

ami-0c3d92683a7946ac3

61

Amazon EKS User Guide
Launching Amazon EKS Worker Nodes

Region
US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore)
(ap-southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-

Amazon EKS-optimized

AMI

ami-0566833f0c8e9031e

ami-0e2e431905d176277

ami-073c3d075aeb53d1f

ami-0644b094efc34d888

ami-0ab0067299faa5229

ami-087£58c635bb8283b

ami-06caef7a88fd74af2

ami-099b3£f8db68693895

ami-06b60c5852910e7b5
ami-0b56c1f39e4bleb8e
ami-036237d1951bfeabc

ami-0612e10dfe00c5£ff6

with GPU support

ami-058b22acd515ec20b

ami-Obaf9ac8446e87£fb5

ami-0c709282458d1114c

ami-023f507ec007de487

ami-0ccbbe6530310b01d

ami-0341435cf966cb837

ami-0987b07bd338£97db

ami-060£13bd7397£782d

ami-0d84963dfda5af073
ami-0189e53a00d37a0bé
ami-Obaea83f5f5d2abfe

ami-0d5b7823e58094232

north-1)

Note

The Amazon EKS worker node AMI is based on Amazon Linux 2. You can track
security or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or
subscribe to the associated RSS feed. Security and privacy events include an overview
of the issue, what packages are affected, and how to update your instances to correct
the issue.

KeyName - Enter the name of an Amazon EC2 SSH key pair that you can use to connect using
SSH into your worker nodes with after they launch. If you don't already have an Amazon

EC2 keypair, you can create one in the AWS Management Console. For more information, see
Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

Note
If you do not provide a keypair here, the AWS CloudFormation stack creation fails.

BootstrapArguments — Specify any optional arguments to pass to the worker node bootstrap
script, such as extra kubelet arguments. For more information, view the bootstrap script
usage information at https://github.com/awslabs/amazon-eks-ami/blob/master/files/
bootstrap.sh

Vpcld - Enter the ID for the VPC that your worker nodes should launch into.

Subnets — Choose the subnets within the preceding VPC that your worker nodes should
launch into. If you are launching worker nodes into only private subnets, do not include public
subnets here.

62

https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh

Amazon EKS User Guide
Launching Amazon EKS Worker Nodes

10.
11.

On the Options page, you can choose to tag your stack resources. Choose Next.

On the Review page, review your information, acknowledge that the stack might create IAM
resources, and then choose Create.

When your stack has finished creating, select it in the console and choose Outputs.

Record the NodelnstanceRole for the node group that was created. You need this when you
configure your Amazon EKS worker nodes.

To enable worker nodes to join your cluster

1.

Download, edit, and apply the AWS IAM Authenticator configuration map.

a. Use the following command to download the configuration map:

curl -o aws-auth-cm.yaml https://amazon-eks.s3-us-west-2.amazonaws.com/
cloudformation/2019-02-11/aws-auth-cm.yaml

b. Open the file with your favorite text editor. Replace the <ARN of instance role (not
instance profile)> snippet with the NodelnstanceRole value that you recorded in the
previous procedure, and save the file.

Important
Do not modify any other lines in this file.

apivVersion: vl
kind: ConfigMap
metadata:
name: aws-auth
namespace: kube-system
data:
mapRoles: |
- rolearn: <ARN of instance role (not instance profile)>
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes

c. Apply the configuration. This command may take a few minutes to finish.

kubectl apply -f aws-auth-cm.yaml

Note

If you receive the error "aws-iam-authenticator": executable file

not found in $PATH, your kubectl isn't configured for Amazon EKS. For more
information, see Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or
Access Denied (kubectl) (p. 180) in the troubleshooting section.

Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

(GPU workers only) If you chose a P2 or P3 instance type and the Amazon EKS-optimized AMI
with GPU support, you must apply the NVIDIA device plugin for Kubernetes as a DaemonSet on
your cluster with the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-
beta/nvidia-device-plugin.yml

63

https://github.com/NVIDIA/k8s-device-plugin

Amazon EKS User Guide
Worker Node Updates

Worker Node Updates

When a new Amazon EKS-optimized AMl is released, you should consider replacing the nodes in your
worker node group with the new AMI. Likewise, if you have updated the Kubernetes version for your
Amazon EKS cluster, you should also update the worker nodes to use worker nodes with the same
Kubernetes version.

There are two basic ways to update the worker nodes in your clusters to use a new AMI: create a new
worker node group and migrate your pods to that group, or update the AWS CloudFormation stack for
an existing worker node group to use the new AMI. This latter method is not supported for worker node
groups that were created with eksctl.

Migrating to a new worker node group is more graceful than simply updating the AMI ID in an existing
AWS CloudFormation stack, because the migration process taints the old node group as NoSchedule
and drains the nodes after a new stack is ready to accept the existing pod workload.

Topics
« Migrating to a New Worker Node Group (p. 64)
« Updating an Existing Worker Node Group (p. 69)

Migrating to a New Worker Node Group

This topic helps you to create a new worker node group, gracefully migrate your existing applications to
the new group, and then remove the old worker node group from your cluster.

eksctl
To migrate your applications to a new worker node group with eksetl

This procedure assumes that you have installed eksctl, and that your eksctl version is at least
0.1.37.You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksctl, see Installing or Upgrading
eksctl (p. 120).

Note
This procedure only works for clusters and worker node groups that were created with
eksctl.

1. Retrieve the name of your existing worker node groups, substituting the red text with your
cluster name.

eksctl get nodegroups --cluster=default

Output:

CLUSTER NODEGROUP CREATED MIN SIZE MAX SIZE
DESIRED CAPACITY INSTANCE TYPE IMAGE ID

default standard-workers 2019-05-01T22:26:58Z 1 4 3

t3.medium ami-05a71d034119ffc12

2. Launch a new worker node group with eksctl with the following command, substituting the
red text with your own values.

64

Amazon EKS User Guide
Migrating to a New Worker Node Group

Note
For more available flags and their descriptions, see https://eksctl.io/.

eksctl create nodegroup \
--cluster default \
--version 1.13 \

--name standard-1-13 \
--node-type t3.medium \
--nodes 3 \

--nodes-min 1 \
--nodes-max 4 \
--node-ami auto

When the previous command completes, verify that all of your worker nodes have reached the
Ready state with the following command:

kubectl get nodes

Delete the original node group with the following command, substituting the red text with your
cluster and nodegroup names:

eksctl delete nodegroup --cluster default --name standard-workers

AWS Management Console

To migrate your applications to a new worker node group with the AWS Management
Console

1.

Launch a new worker node group by following the steps outlined in Launching Amazon EKS
Worker Nodes (p. 57).

When your stack has finished creating, select it in the console and choose Outputs.

Record the NodelnstanceRole for the node group that was created. You need this to add the
new Amazon EKS worker nodes to your cluster.

Note
If you have attached any additional IAM policies to your old node group IAM role, such
as adding permissions for the Kubernetes Cluster Autoscaler, you should attach those
same policies to your new node group IAM role to maintain that functionality on the
new group.
Update the security groups for both worker node groups so that they can communicate with
each other. For more information, see Cluster Security Group Considerations (p. 84).

a. Record the security group IDs for both worker node groups. This is shown as the
NodeSecurityGroup value in the AWS CloudFormation stack outputs.

You can use the following AWS CLI commands to get the security group IDs from the stack
names. In these commands, o1dNodes is the AWS CloudFormation stack name for your
older worker node stack, and newNodes is the name of the stack that you are migrating to.

oldNodes="<old_node_CFN_stack_name>"
newNodes="<new_node_CFN_stack_name>"

oldSecGroup=$(aws cloudformation describe-stack-resources --stack-name
$oldNodes \

--query 'StackResources[?

ResourceType=="AWS: :EC2::SecurityGroup”].PhysicalResourceId' \
--output text)

65

https://eksctl.io/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Amazon EKS User Guide
Migrating to a New Worker Node Group

newSecGroup=$(aws cloudformation describe-stack-resources --stack-name
$newNodes \

--query 'StackResources[?

ResourceType=="AWS: :EC2::SecurityGroup].PhysicalResourceId' \
--output text)

b. Add ingress rules to each worker node security group so that they accept traffic from each
other.

The following AWS CLI commands add ingress rules to each security group that allow all
traffic on all protocols from the other security group. This configuration allows pods in each
worker node group to communicate with each other while you are migrating your workload
to the new group.

aws ec2 authorize-security-group-ingress --group-id $oldSecGroup \
--source-group $newSecGroup --protocol -1
aws ec2 authorize-security-group-ingress --group-id $newSecGroup \
--source-group $oldSecGroup --protocol -1

Edit the aws-auth configmap to map the new worker node instance role in RBAC.

kubectl edit configmap -n kube-system aws-auth

Add a new mapRoles entry for the new worker node group.

apivVersion: vl
data:
mapRoles: |
- rolearn: <ARN of instance role (not instance profile)>
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes
- rolearn: arn:aws:iam::111122223333:role/workers-1-10-NodeInstanceRole-
U1l1V27W93CX5
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes

Replace the <ARN of instance role (not instance profile)> snippet with the
NodelnstanceRole value that you recorded in Step 3 (p. 65), then save and close the file to
apply the updated configmap.

Watch the status of your nodes and wait for your new worker nodes to join your cluster and
reach the Ready status.

kubectl get nodes --watch

(Optional) If you are using the Kubernetes Cluster Autoscaler, scale the deployment down to O
replicas to avoid conflicting scaling actions.

kubectl scale deployments/cluster-autoscaler --replicas=0 -n kube-system

Use the following command to taint each of the nodes that you want to remove with
NoSchedule so that new pods are not scheduled or rescheduled on the nodes you are
replacing:

kubectl taint nodes node_name key=value:NoSchedule

66

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Amazon EKS User Guide
Migrating to a New Worker Node Group

10.

11.

12.

If you are upgrading your worker nodes to a new Kubernetes version, you can identify and taint
all of the nodes of a particular Kubernetes version (in this case, 1.10.3) with the following code
snippet.

K8S_VERSION=1.10.3
nodes=$(kubectl get nodes -o jsonpath="{.items[?(@.status.nodeInfo.kubeletVersion==
\"v$K8S_VERSION\")].metadata.name}")
for node in ${nodes[e]}
do
echo "Tainting $node"
kubectl taint nodes $node key=value:NoSchedule
done

Determine your cluster's DNS provider.

kubectl get deployments -1 k8s-app=kube-dns -n kube-system

Output (this cluster is using kube-dns for DNS resolution, but your cluster may return coredns
instead):

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kube-dns 1 1 1 1 31m

If your current deployment is running fewer than two replicas, scale out the deployment to two
replicas. Substitute coredns for kube-dns if your previous command output returned that
instead.

kubectl scale deployments/kube-dns --replicas=2 -n kube-system

Drain each of the nodes that you want to remove from your cluster with the following
command:

kubectl drain node_name --ignore-daemonsets --delete-local-data

If you are upgrading your worker nodes to a new Kubernetes version, you can identify and drain
all of the nodes of a particular Kubernetes version (in this case, 1.10.3) with the following code
snippet.

K8S_VERSION=1.10.3
nodes=$(kubectl get nodes -o jsonpath="{.items[?(@.status.nodeInfo.kubeletVersion==
\"v$K8S_VERSION\")].metadata.name}")
for node in ${nodes[e@]}
do
echo "Draining $node"
kubectl drain $node --ignore-daemonsets --delete-local-data
done

After your old worker nodes have finished draining, revoke the security group ingress rules you
authorized earlier, and then delete the AWS CloudFormation stack to terminate the instances.

Note

If you have attached any additional IAM policies to your old node group IAM role, such
as adding permissions for the Kubernetes Cluster Autoscaler), you must detach those
additional policies from the role before you can delete your AWS CloudFormation stack.

67

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Amazon EKS User Guide
Migrating to a New Worker Node Group

a. Revoke the ingress rules that you created for your worker node security groups earlier. In
these commands, o1dNodes is the AWS CloudFormation stack name for your older worker
node stack, and newNodes is the name of the stack that you are migrating to.

oldNodes="<old_node_CFN_stack_name>"
newNodes="<new_node_CFN_stack_name>"

oldsecGroup=$(aws cloudformation describe-stack-resources --stack-name
$0ldNodes \

--query 'StackResources[?

ResourceType=="AWS: :EC2::SecurityGroup”].PhysicalResourceId' \
--output text)

newSecGroup=$(aws cloudformation describe-stack-resources --stack-name
$newNodes \

--query 'StackResources[?

ResourceType=="AWS: :EC2::SecurityGroup”].PhysicalResourceId' \
--output text)

aws ec2 revoke-security-group-ingress --group-id $oldSecGroup \
--source-group $newSecGroup --protocol -1

aws ec2 revoke-security-group-ingress --group-id $newSecGroup \
--source-group $oldSecGroup --protocol -1

b. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

c. Select your old worker node stack.
d. Choose Actions, then Delete stack.

13. Edit the aws-auth configmap to remove the old worker node instance role from RBAC.

kubectl edit configmap -n kube-system aws-auth

Delete the mapRoles entry for the old worker node group.

apiversion: vl

data:
mapRoles: |
- rolearn: arn:aws:iam::111122223333:role/workers-1-11-NodeInstanceRole-
W70725MZQFF8
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes
- rolearn: arn:aws:iam::111122223333:role/workers-1-10-NodeInstanceRole-
U11V27W93CX5
username: system:node:{{EC2PrivateDNSName}}
groups:

- system:bootstrappers
- system:nodes

Save and close the file to apply the updated configmap.

14. (Optional) If you are using the Kubernetes Cluster Autoscaler, scale the deployment back to one
replica.

Note

You must also tag your new Auto Scaling group appropriately (for example, k8s.io/
cluster-autoscaler/enabled,k8s.io/cluster-autoscaler/<YOUR CLUSTER
NAME>) and update your Cluster Autoscaler deployment's command to point to the
newly tagged Auto Scaling group. For more information, see Cluster Autoscaler on
AWS,

68

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/cluster-autoscaler-release-1.3/cluster-autoscaler/cloudprovider/aws
https://github.com/kubernetes/autoscaler/tree/cluster-autoscaler-release-1.3/cluster-autoscaler/cloudprovider/aws

Amazon EKS User Guide
Updating an Existing Worker Node Group

kubectl scale deployments/cluster-autoscaler --replicas=1 -n kube-system

15. (Optional) Verify that you are using the latest version of the Amazon VPC CNI plugin for
Kubernetes. You may need to update your CNI version to take advantage of the latest
supported instance types. For more information, see Amazon VPC CNI Plugin for Kubernetes
Upgrades (p. 98).

16. If your cluster is using kube-dns for DNS resolution (see step Step 9 (p. 67)), scale in the
kube-dns deployment to one replica.

kubectl scale deployments/kube-dns --replicas=1 -n kube-system

Updating an Existing Worker Node Group

This topic helps you to update an existing AWS CloudFormation worker node stack with a new AMI. You
can use this procedure to update your worker nodes to a new version of Kubernetes following a cluster
update, or you can update to the latest Amazon EKS-optimized AMI for an existing Kubernetes version.

The latest default Amazon EKS worker node AWS CloudFormation template is configured to launch

an instance with the new AMI into your cluster before removing an old one, one at a time. This
configuration ensures that you always have your Auto Scaling group's desired count of active instances in
your cluster during the rolling update.

Note

This method is not supported for worker node groups that were created with eksctl. If you
created your cluster or worker node group with eksctl, see Migrating to a New Worker Node
Group (p. 64).

To update an existing worker node group

1.

Determine your cluster's DNS provider.

kubectl get deployments -1 k8s-app=kube-dns -n kube-system

Output (this cluster is using kube-dns for DNS resolution, but your cluster may return coredns
instead):

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kube-dns 1 1 1 1 31m

If your current deployment is running fewer than two replicas, scale out the deployment to two
replicas. Substitute coredns for kube-dns if your previous command output returned that instead.

kubectl scale deployments/kube-dns --replicas=2 -n kube-system

(Optional) If you are using the Kubernetes Cluster Autoscaler, scale the deployment down to zero
replicas to avoid conflicting scaling actions.

kubectl scale deployments/cluster-autoscaler --replicas=0 -n kube-system

Determine the instance type and desired instance count of your current worker node group. You will
enter these values later when you update the AWS CloudFormation template for the group.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

69

https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://console.aws.amazon.com/ec2/

Amazon EKS User Guide
Updating an Existing Worker Node Group

© N o wn

Choose Launch Configurations in the left navigation, and note the instance type for your
existing worker node launch configuration.

Choose Auto Scaling Groups in the left navigation and note the Desired instance count for your
existing worker node Auto Scaling group.

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

Select your worker node group stack, and then choose Actions, Update stack.

For Choose a template, select Specify an Amazon S3 template URL.

Paste the following URL into the text area to ensure that you are using the latest version of the
worker node AWS CloudFormation template, and then choose Next:

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
nodegroup.yaml

On the Specify Details page, fill out the following parameters, and choose Next:

NodeAutoScalingGroupDesiredCapacity — Enter the desired instance count that you recorded in
Step 4 (p. 69), or enter a new desired number of nodes to scale to when your stack is updated.

NodeAutoScalingGroupMaxSize — Enter the maximum number of nodes to which your worker
node Auto Scaling group can scale out. This value must be at least one node greater than your
desired capacity so that you can perform a rolling update of your worker nodes without
reducing your node count during the update.

NodelnstanceType — Choose the instance type your recorded in Step 4 (p. 69), or choose a
different instance type for your worker nodes.

Note

The supported instance types for the latest version of the Amazon VPC CNI plugin for
Kubernetes are shown here. You may need to update your CNI version to take advantage
of the latest supported instance types. For more information, see Amazon VPC CNI Plugin
for Kubernetes Upgrades (p. 98).

Important
Some instance types might not be available in all regions.

Nodelmageld — Enter the current Amazon EKS worker node AMI ID for your Region. The AMI IDs

for the latest Amazon EKS-optimized AMI (with and without GPU support (p. 53)) are shown in
the following table.

Note

The Amazon EKS-optimized AMI with GPU support only supports P2 and P3 instance
types. Be sure to specify these instance types in your worker node AWS CloudFormation
template. By using the Amazon EKS-optimized AMI with GPU support, you agree to
NVIDIA's end user license agreement (EULA).

Kubernetes version 1.13.8

Region Amazon EKS-optimized AMI with GPU support

US East (Ohio) (us-east-2) ami-027683840ad78d833 | ami-0af8403c143fd4a07

US East (N. Virginia) (us- ami-0d3998d69ebe9b214 | ami-0484012ada3522476
east-1)

US West (Oregon) (us- ami-00b95829322267382 ami-0d24da600cc96aeb6b
west-2)

Asia Pacific (Hong Kong) ami-03f8634a8fd592414 | ami-080eb165234752969
(ap-east-1)

70

https://console.aws.amazon.com/cloudformation/
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/release-1.5/pkg/awsutils/vpc_ip_resource_limit.go
https://www.nvidia.com/en-us/about-nvidia/eula-agreement/

Amazon EKS User Guide
Updating an Existing Worker Node Group

Region

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Kubernetes version 1.12.10

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

Amazon EKS-optimized AMI

ami-0062e5b041l1le77cla

ami-0a67c71d2ab43d36f

ami-0d66d2fefbc86831a

ami-06206d907abb34bbc

ami-09£f2d86£2d8c4£77d

ami-038bd8d3a2345061f

ami-0199284372364b02a
ami-0£f454b09349248e29
ami-00b44348ab3eb2c9f

ami-02218be9004537a65

Amazon EKS-optimized AMI
ami-Oebblc51e5fe9c376

ami-01e370£796735b244

ami-0b520e822d42998cl

ami-0aa07b9e8bfcdaaff

ami-03b7b0e3088a72394

ami-0£554256ac7b33081

ami-066a40£f5£0e0b90f4

ami-06a42a7479836d402

ami-0£93997£f60ca40d26

with GPU support

ami-010dbb7183ab64b39

ami-069303796840£8155

ami-04£f71dc710ff5baf4

ami-0213fc532blc2e05f

ami-01fc0a4c67£82532b

ami-07b7cbb235789¢cc31

ami-00bfeece5b673b69f
ami-Obabebc79dbf6016c
ami-03136b5b83c5b61lba

ami-05782laceal5cla98

with GPU support
ami-0b42bfc7af8bb3abc

ami-0eb0119£55d589a03

ami-0c9156d7fcd3c2948

ami-0a5e7de0e5d22a988

ami-0clbc87££613a979b

ami-0e2£f87975£f5aa9908

ami-08101c357b41e9f9%a

ami-0420c66a82472f4b2

ami-04a085528a6af6499

71

Amazon EKS User Guide
Updating an Existing Worker Node Group

Region

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Kubernetes version 1.11.10

Region
US East (Ohio) (us-east-2)

US East (N. Virginia) (us-
east-1)

US West (Oregon) (us-
west-2)

Asia Pacific (Hong Kong)
(ap-east-1)

Asia Pacific (Mumbai) (ap-
south-1)

Asia Pacific (Tokyo) (ap-
northeast-1)

Asia Pacific (Seoul) (ap-
northeast-2)

Asia Pacific (Singapore) (ap-
southeast-1)

Asia Pacific (Sydney) (ap-
southeast-2)

EU (Frankfurt) (eu-
central-1)

EU (Ireland) (eu-west-1)
EU (London) (eu-west-2)
EU (Paris) (eu-west-3)

EU (Stockholm) (eu-
north-1)

Amazon EKS-optimized AMI

ami-04341c15¢2£941589

ami-018b4a3£f81£f517183
ami-0£fd0b45d54£80a0e9
ami-0b12420c7£7281432

ami-01lclb0Ob8dcbd02bll

Amazon EKS-optimized AMI
ami-0e565ff1ccb9b6979

ami-08571céceeladbbé62

ami-0566833f0c8e9031e

ami-0e2e431905d176277

ami-073c3d075aeb53d1f

ami-0644b094efc34d888

ami-0ab0067299faa5229

ami-087£58c635bb8283b

ami-06caef7a88fd74af2

ami-099b3£8db68693895

ami-06b60c5852910e7b5
ami-0b56c1f39e4bleb8e
ami-036237d1951bfeabc

ami-0612e10dfe00c5£ff6

with GPU support

ami-09c45f4e40a56254b

ami-04668c090f£f8c1£f50
ami-0b925567bd252e74c
ami-0f975ac243bcd0dal

ami-093da2874a5426ce3

with GPU support
ami-0£9e62727a55£68d3

ami-0c3d92683a7946ac3

ami-058b22acd515ec20b

ami-Obaf9ac8446e87£fb5

ami-0c709282458d1114c

ami-023f507ec007de487

ami-0ccbbe6530310b01d

ami-0341435cf966chb837

ami-0987b07bd338£97db

ami-060£13bd7397£782d

ami-0d84963dfda5af073
ami-0189e53a00d37a0bé
ami-Obaea83f5f5d2abfe

ami-0d5b7823e58094232

72

Amazon EKS User Guide
Updating an Existing Worker Node Group

10.
11.

12.

13.

14.

Note

The Amazon EKS worker node AMI is based on Amazon Linux 2. You can track security

or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or subscribe

to the associated RSS feed. Security and privacy events include an overview of the issue,

what packages are affected, and how to update your instances to correct the issue.
(Optional) On the Options page, tag your stack resources. Choose Next.

On the Review page, review your information, acknowledge that the stack might create IAM
resources, and then choose Update.

Note

Wait for the update to complete before performing the next steps.
If your cluster's DNS provider is kube-dns, scale in the kube-dns deployment to one replica.

kubectl scale deployments/kube-dns --replicas=1 -n kube-system

(Optional) If you are using the Kubernetes Cluster Autoscaler, scale the deployment back to one
replica.

kubectl scale deployments/cluster-autoscaler --replicas=1 -n kube-system

(Optional) Verify that you are using the latest version of the Amazon VPC CNI plugin for Kubernetes.
You may need to update your CNI version to take advantage of the latest supported instance types.
For more information, see Amazon VPC CNI Plugin for Kubernetes Upgrades (p. 98).

73

https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/aws/amazon-vpc-cni-k8s

Amazon EKS User Guide

Storage Classes

Amazon EKS clusters that were created prior to Kubernetes version 1.11 were not created with any
storage classes. You must define storage classes for your cluster to use and you should define a default
storage class for your persistent volume claims. For more information, see Storage Classes in the
Kubernetes documentation.

To create an AWS storage class for your Amazon EKS cluster

1. Create an AWS storage class manifest file for your storage class. The gp2-storage-class.yaml
example below defines a storage class called gp2 that uses the Amazon EBS gp2 volume type.

For more information about the options available for AWS storage classes, see AWS EBS in the
Kubernetes documentation.

kind: StorageClass
apivVersion: storage.k8s.io/vl
metadata:
name: gp2
annotations:
storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/aws-ebs
parameters:
type: gp2
fsType: ext4

2. Use kubectl to create the storage class from the manifest file.

kubectl create -f gp2-storage-class.yaml

Output:

storageclass "gp2" created

To define a default storage class

1. List the existing storage classes for your cluster. A storage class must be defined before you can set it

as a default.

kubectl get storageclass

Output:
NAME PROVISIONER AGE
gp2 kubernetes.io/aws-ebs 8m

2. Choose a storage class and set it as your default by setting the storageclass.kubernetes.io/
is-default-class=true annotation.

kubectl patch storageclass gp2 -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class":"true"}}}"'

74

https://kubernetes.io/docs/concepts/storage/storage-classes
https://kubernetes.io/docs/concepts/storage/storage-classes/#aws-ebs

Amazon EKS User Guide

Output:

storageclass "gp2" patched

Verify that the storage class is now set as default.

kubectl get storageclass

Output:

gp2 (default) kubernetes.io/aws-ebs 12m

75

Amazon EKS User Guide
Load Balancing

Load Balancing and Ingress

This chapter covers common load balancing and Ingress configuration for Amazon EKS clusters.

Topics
« Load Balancing (p. 76)
» ALB Ingress Controller on Amazon EKS (p. 77)

Load Balancing

Amazon EKS supports the Network Load Balancer and the Classic Load Balancer through the Kubernetes
service of type LoadBalancer. The configuration of your load balancer is controlled by annotations that
are added to the manifest for your service.

By default, Classic Load Balancers are used for LoadBalancer type services. To use the Network Load
Balancer instead, apply the following annotation to your service:

service.beta.kubernetes.io/aws-load-balancer-type: nlb

For more information about using Network Load Balancer with Kubernetes, see Network Load Balancer
support on AWS in the Kubernetes documentation.

By default, services of type LoadBalancer create public-facing load balancers. To use an internal load
balancer, apply the following annotation to your service:

service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0

For internal load balancers, your Amazon EKS cluster must be configured to use at least one private
subnet in your VPC. Kubernetes examines the route table for your subnets to identify whether they are
public or private. Public subnets have a route directly to the internet using an internet gateway, but
private subnets do not.

Subnet Tagging for Load Balancers

Public subnets in your VPC may be tagged accordingly so that Kubernetes knows to use only those
subnets for external load balancers, instead of choosing a public subnet in each Availability Zone (in
lexicographical order by subnet ID):

Key Value

kubernetes.io/role/elb 1

Private subnets in your VPC should be tagged accordingly so that Kubernetes knows that it can use them
for internal load balancers:

76

https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support

Amazon EKS User Guide
ALB Ingress Controller on Amazon EKS

Key Value

kubernetes.io/role/internal-elb 1

ALB Ingress Controller on Amazon EKS

The AWS ALB Ingress Controller for Kubernetes is a controller that triggers the creation of an Application
Load Balancer and the necessary supporting AWS resources whenever an Ingress resource is created on
the cluster with the kubernetes.io/ingress.class: alb annotation. The Ingress resource uses the
ALB to route HTTP or HTTPS traffic to different endpoints within the cluster.

To ensure that your Ingress objects use the ALB Ingress Controller, add the following annotation to your
Ingress specification. For more information, see Ingress specification in the documentation.

annotations:

kubernetes.io/ingress.class: alb

For other available annotations supported by the ALB Ingress Controller, see Ingress annotations.

This topic show you how to configure the ALB Ingress Controller to work with your Amazon EKS cluster.

To deploy the ALB Ingress Controller to an Amazon EKS cluster

1.

Tag the subnets in your VPC that you want to use for your load balancers so that the ALB Ingress
Controller knows that it can use them.

« Public subnets in your VPC should be tagged accordingly so that Kubernetes knows to use only
those subnets for external load balancers.

Key Value
kubernetes.io/role/elb 1

« Private subnets in your VPC should be tagged accordingly so that Kubernetes knows that it can
use them for internal load balancers:

Key Value
kubernetes.io/role/internal-elb 1

Create an IAM policy called ALBIngressControllerIAMPolicy for your worker node instance
profile that allows the ALB Ingress Controller to make calls to AWS APIs on your behalf. Use the
following AWS CLI command to create the IAM policy in your AWS account. You can view the policy
document on GitHub.

aws iam create-policy \

--policy-name ALBIngressControllerIAMPolicy \

--policy-document https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/iam-policy.json

Take note of the policy ARN that is returned.

Get the IAM role name for your worker nodes. Use the following command to print the aws-auth
configmap.

77

https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://kubernetes-sigs.github.io/aws-alb-ingress-controller/guide/ingress/spec/
https://kubernetes-sigs.github.io/aws-alb-ingress-controller/guide/ingress/annotation/
https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-controller/v1.1.2/docs/examples/iam-policy.json

Amazon EKS User Guide
ALB Ingress Controller on Amazon EKS

kubectl -n kube-system describe configmap aws-auth

Output:

Name: aws-auth
Namespace: kube-system
Labels: <none>
Annotations: <none>

Data

mapRoles:

- groups:

- system:bootstrappers

- system:nodes

rolearn: arn:aws:iam::111122223333:role/eksctl-alb-nodegroup-ng-b1l1f603c5-
NodeInstanceRole-GKNS581EASPU

username: system:node:{{EC2PrivateDNSName}}

Events: <none>

Record the role name for any rolearn values that have the system:nodes group assigned to
them. In the above example output, the role name is eksctl-alb-nodegroup-ng-b1f603c5-
NodeInstanceRole-GKNS581EASPU. You should have one value for each node group in your
cluster.

Attach the new ALBIngressControllerIAMPolicy IAM policy to each of the worker node IAM
roles you identified earlier with the following command, substituting the red text with your own
AWS account number and worker node 1AM role name.

aws iam attach-role-policy \
--policy-arn arn:aws:iam::111122223333:policy/ALBIngressControllerIAMPolicy \
--role-name eksctl-alb-nodegroup-ng-bl1f603c5-NodeInstanceRole-GKNS581EASPU

Create a service account, cluster role, and cluster role binding for the ALB Ingress Controller to use
with the following command.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/v1l.1.2/docs/examples/rbac-role.yaml

Deploy the ALB Ingress Controller with the following command.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/alb-ingress-controller.yaml

Open the ALB Ingress Controller deployment manifest for editing with the following command.

kubectl edit deployment.apps/alb-ingress-controller -n kube-system

Add the cluster name, VPC ID, and AWS Region name for your cluster after the --ingress-
class=alb line and then save and close the file.

spec:
containers:
- args:
- --ingress-class=alb
- —--cluster-name=my_cluster

78

Amazon EKS User Guide
ALB Ingress Controller on Amazon EKS

- —--—aws-vpc-id=vpc-03468a8157edcas5bd
- --aws-region=us-west-2

To deploy a sample application

1.

Deploy a sample application to verify that the ALB Ingress Controller creates an Application Load
Balancer as a result of the Ingress object. Use the following commands to deploy the game 2048 as
a sample application.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/v1l.1.2/docs/examples/2048/2048-namespace.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/2048/2048-deployment.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/2048/2048-service.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/2048/2048-ingress.yaml

After a few minutes, verify that the Ingress resource was created with the following command.

kubectl get ingress/2048-ingress -n 2048-game

Output:
NAME HOSTS ADDRESS
PORTS AGE
2048-ingress * example-2048game-2048ingr-6fa0-352729433.us-
west-2.elb.amazonaws.com 80 24h

Open a browser and navigate to the ADDRESS URL from the previous command output to see the
sample application.

When you finish experimenting with your sample application, delete it with the following
commands.

kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/2048/2048-ingress.yaml

kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vl.1.2/docs/examples/2048/2048-service.yaml

kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vi.1.2/docs/examples/2048/2048-deployment.yaml

kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-
controller/vli.1.2/docs/examples/2048/2048-namespace.yaml

79

https://play2048.co/

Amazon EKS User Guide
Creating a VPC for Amazon EKS

Amazon EKS Networking

This chapter covers networking considerations for running Kubernetes on Amazon EKS.

Topics
» Creating a VPC for Your Amazon EKS Cluster (p. 80)
o Cluster VPC Considerations (p. 82)
o Cluster Security Group Considerations (p. 84)
« Pod Networking (p. 86)
» CNI Configuration Variables (p. 88)
o Installing CoreDNS (p. 89)
« External Source Network Address Translation (SNAT) (p. 92)
o CNI Custom Networking (p. 95)
« Amazon VPC CNI Plugin for Kubernetes Upgrades (p. 98)
« Installing Calico on Amazon EKS (p. 98)

Creating a VPC for Your Amazon EKS Cluster

Amazon Virtual Private Cloud (Amazon VPC) enables you to launch AWS resources into a virtual
network that you've defined. This virtual network closely resembles a traditional network that you'd
operate in your own data center, with the benefits of using the scalable infrastructure of AWS. For more
information, see the Amazon VPC User Guide.

This topic guides you through creating a VPC for your cluster with either 3 public subnets, or two public
subnets and two private subnets, which are provided with internet access through a NAT gateway. You
can use this VPC for your Amazon EKS cluster. We recommend a network architecture that uses private
subnets for your worker nodes, and public subnets for Kubernetes to create public load balancers within.

Choose the tab below that represents your desired VPC configuration.
Only public subnets
To create your cluster VPC with only public subnets

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
From the navigation bar, select a Region that supports Amazon EKS.

Choose Create stack.

For Choose a template, select Specify an Amazon S3 template URL.

Paste the following URL into the text area and choose Next:

LA A B

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
vpc-sample.yaml

6. On the Specify Details page, fill out the parameters accordingly, and then choose Next.

« Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you can
call it eks-vpc.

« VpcBlock: Choose a CIDR range for your VPC. You can keep the default value.

« Subnet01Block: Specify a CIDR range for subnet 1. We recommend that you keep the default
value so that you have plenty of IP addresses for pods to use.

80

https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/cloudformation/

Amazon EKS User Guide
Creating a VPC for Amazon EKS

11.

12.

« Subnet02Block: Specify a CIDR range for subnet 2. We recommend that you keep the default
value so that you have plenty of IP addresses for pods to use.

« Subnet03Block: Specify a CIDR range for subnet 3. We recommend that you keep the default
value so that you have plenty of IP addresses for pods to use.

(Optional) On the Options page, tag your stack resources. Choose Next.
On the Review page, choose Create.
When your stack is created, select it in the console and choose Outputs.

. Record the SecurityGroups value for the security group that was created. You need this

when you create your EKS cluster; this security group is applied to the cross-account elastic
network interfaces that are created in your subnets that allow the Amazon EKS control plane to
communicate with your worker nodes.

Record the Vpcld for the VPC that was created. You need this when you launch your worker
node group template.

Record the Subnetlds for the subnets that were created. You need this when you create your
EKS cluster; these are the subnets that your worker nodes are launched into.

Public and private subnets

To create your cluster VPC with public and private subnets

vk N =

11.

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
From the navigation bar, select a Region that supports Amazon EKS.

Choose Create stack.

For Choose a template, select Specify an Amazon S3 template URL.

Paste the following URL into the text area and choose Next:

https://amazon-eks.s3-us-west-2.amazonaws.com/cloudformation/2019-02-11/amazon-eks-
vpc-private-subnets.yaml

On the Specify Details page, fill out the parameters accordingly, and then choose Next.

« Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you can
call it eks-vpc.

« VpcBlock: Choose a CIDR range for your VPC. You can keep the default value.

« PublicSubnet01Block: Specify a CIDR range for public subnet 1. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

o PublicSubnet02Block: Specify a CIDR range for public subnet 2. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

« PrivateSubnet01Block: Specify a CIDR range for private subnet 1. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

« PrivateSubnet02Block: Specify a CIDR range for private subnet 2. We recommend that you
keep the default value so that you have plenty of IP addresses for pods to use.

(Optional) On the Options page, tag your stack resources. Choose Next.
On the Review page, choose Create.
When your stack is created, select it in the console and choose Outputs.

. Record the SecurityGroups value for the security group that was created. You need this

when you create your EKS cluster; this security group is applied to the cross-account elastic
network interfaces that are created in your subnets that allow the Amazon EKS control plane to
communicate with your worker nodes.

Record the Vpcld for the VPC that was created. You need this when you launch your worker
node group template.

81

https://console.aws.amazon.com/cloudformation/

Amazon EKS User Guide
Next Steps

12. Record the Subnetlds for the subnets that were created. You need this when you create your
EKS cluster; these are the subnets that your worker nodes are launched into.

13. Tag your private subnets so that Kubernetes knows that it can use them for internal load
balancers.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
Choose Subnets in the left navigation.

Select one of the private subnets for your Amazon EKS cluster's VPC (you can filter them
with the string PrivateSubnet), and choose the Tags tab, and then Add/Edit Tags.

d. Choose Create Tag and add the following key and value, and then choose Save.

Key Value

kubernetes.io/role/internal-elb 1

e. Repeat these substeps for each private subnet in your VPC.

Next Steps

After you have created your VPC, you can try the Getting Started with Amazon EKS (p. 3) walkthrough,
but you can skip the Create your Amazon EKS Cluster VPC (p. 9) section and use these subnets and
security groups for your cluster.

Cluster VPC Considerations

When you create an Amazon EKS cluster, you specify the Amazon VPC subnets for your cluster to use.
Amazon EKS requires subnets in at least two Availability Zones. We recommend a network architecture
that uses private subnets for your worker nodes and public subnets for Kubernetes to create internet-
facing load balancers within.

When you create your cluster, specify all of the subnets that will host resources for your cluster (such as
worker nodes and load balancers).

Note

Internet-facing load balancers require a public subnet in your cluster. Worker nodes also

require outbound internet access to the Amazon EKS APIs for cluster introspection and node
registration at launch time. To pull container images, they require access to the Amazon S3 and
Amazon ECR APIs (and any other container registries, such as DockerHub). For more information,
see Cluster Security Group Considerations (p. 84) and AWS IP Address Ranges in the AWS
General Reference.

The subnets that you pass when you create the cluster influence where Amazon EKS places elastic
network interfaces that are used for the control plane to worker node communication.

It is possible to specify only public or private subnets when you create your cluster, but there are some
limitations associated with these configurations:

« Private-only: Everything runs in a private subnet and Kubernetes cannot create internet-facing load
balancers for your pods.
 Public-only: Everything runs in a public subnet, including your worker nodes.

Amazon EKS creates an elastic network interface in your private subnets to facilitate communication
to your worker nodes. This communication channel supports Kubernetes functionality such as kubectl

82

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

Amazon EKS User Guide
VPC IP Addressing

exec and kubectl logs. The security group that you specify when you create your cluster is applied to the
elastic network interfaces that are created for your cluster control plane.

Your VPC must have DNS hostname and DNS resolution support. Otherwise, your worker nodes cannot
register with your cluster. For more information, see Using DNS with Your VPC in the Amazon VPC User
Guide.

VPC IP Addressing

You can define both private (RFC 1918) and public (non-RFC 1918) CIDR ranges within the VPC used for
your Amazon EKS cluster. For more information, see VPCs and Subnets and IP Addressing in Your VPC in
the Amazon VPC User Guide.

Important

Docker runs in the 172.17.0.0/16 CIDR range in Amazon EKS clusters. We recommend that
your cluster's VPC subnets do not overlap this range. Otherwise, you will receive the following
error:

Error: : error upgrading connection: error dialing backend: dial tcp
172.17.nn.nn:10250: getsockopt: no route to host

VPC Tagging Requirement

When you create your Amazon EKS cluster, Amazon EKS tags the VPC containing the subnets you specify
in the following way so that Kubernetes can discover it:

Key Value

kubernetes.io/cluster/<cluster-name> shared

« Key: The <cluster-name> value matches your Amazon EKS cluster's name.
« Value: The shared value allows more than one cluster to use this VPC.

Subnet Tagging Requirement

When you create your Amazon EKS cluster, Amazon EKS tags the subnets you specify in the following
way so that Kubernetes can discover them:

Note
All subnets (public and private) that your cluster uses for resources should have this tag.

Key Value

kubernetes.io/cluster/<cluster-name> shared

« Key: The <cluster-name> value matches your Amazon EKS cluster.
« Value: The shared value allows more than one cluster to use this subnet.

Private Subnet Tagging Requirement for Internal Load Balancers

Private subnets in your VPC should be tagged accordingly so that Kubernetes knows that it can use them
for internal load balancers:

83

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html

Amazon EKS User Guide
Cluster Security Group Considerations

Key Value

kubernetes.io/role/internal-elb 1

Public Subnet Tagging Option for External Load Balancers

Public subnets in your VPC may be tagged accordingly so that Kubernetes knows to use only those
subnets for external load balancers, instead of choosing a public subnet in each Availability Zone (in
lexicographical order by subnet ID):

Key Value

kubernetes.io/role/elb 1

Cluster Security Group Considerations

If you create your VPC and worker node groups with the AWS CloudFormation templates provided in the
Getting Started with Amazon EKS (p. 3) walkthrough, then your control plane and worker node security
groups are configured with our recommended settings.

The security group for the worker nodes and the security group for the control plane communication to
the worker nodes have been set up to prevent communication to privileged ports in the worker nodes.
If your applications require added inbound or outbound access from the control plane or worker nodes,
you must add these rules to the security groups associated with your cluster. For more information, see
Security Groups for Your VPC in the Amazon VPC User Guide.

Note

To allow proxy functionality on privileged ports or to run the CNCF conformance tests yourself,
you must edit the security groups for your control plane and the worker nodes. The security
group on the worker nodes' side needs to allow inbound access for ports 0-65535 from the
control plane, and the control plane side needs to allow outbound access to the worker nodes
on ports 0-65535.

The worker node AWS CloudFormation template modifies the cluster control plane security group when
you launch worker nodes (p. 57). Amazon EKS strongly recommends that you use a dedicated security
group for each cluster control plane (one per cluster). If you share a cluster control plane security
group with other Amazon EKS clusters or resources, you may block or disrupt connections to those
resources.

The following tables show the minimum required and recommended security group settings for the
control plane and worker node security groups for your cluster:

Control Plane Security Group

Protocol Port Range Source Destination
Minimum inbound | TCP 443 All worker node
traffic security groups

When cluster
endpoint private
access (p. 35)

is enabled: Any
security groups

84

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon EKS User Guide
Cluster Security Group Considerations

Recommended
inbound traffic

Minimum
outbound traffic

Recommended
outbound traffic

Protocol

TCP

TCP

TCP

Worker Node Security Groups

Minimum inbound
traffic (from other
worker nodes)

Minimum inbound
traffic (from
control plane)

Recommended
inbound traffic

Minimum
outbound traffic*

Recommended
outbound traffic

Protocol

Any protocol
you expect
your worker
nodes to use
for inter-worker
communication

TCP

All

TCP

TCP

All

Port Range

443

10250

1025-65535

Port Range

Any ports you
expect your
worker nodes
to use for
inter-worker
communication

10250

All

443, 1025-65535

443

All

Source

that generate API
server client traffic
(such as kubectl
commands on

a bastion host
within your
cluster's VPC)

All worker node
security groups

When cluster
endpoint private
access (p. 35)

is enabled: Any
security groups
that generate API
server client traffic
(such as kubectl
commands on

a bastion host
within your
cluster's VPC)

Source

All worker node
security groups

Control plane
security group

All worker node
security groups

Control plane
security group

Destination

All worker node
security groups

All worker node
security groups

Destination

Control plane
security group

0.0.0.0/0

85

Amazon EKS User Guide
Pod Networking

* Worker nodes also require outbound internet access to the Amazon EKS APIs for cluster introspection
and node registration at launch time. To pull container images, they require access to the Amazon S3
and Amazon ECR APIs (and any other container registries, such as DockerHub). For more information, see
AWS IP Address Ranges in the AWS General Reference.

Pod Networking

Amazon EKS supports native VPC networking via the Amazon VPC CNI plugin for Kubernetes. Using this
CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC
network. This CNI plugin is an open-source project that is maintained on GitHub.

86

https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://github.com/aws/amazon-vpc-cni-k8s

Amazon EKS User Guide

Pod Networking

ec2.associateaddress()

Java Pod
Veth IP: 10.0.0.2

Instance 1

Nginx Pod
Veth IP: 10.0.0.1

CNI

ENI

Seconda
10.0.!
10.0.!

VPC Sub

The CNI plugin is responsible for allocating VPC IP addresses to Kubernetes nodes and configuring the
necessary networking for pods on each node. The plugin consists of two primary components:

Amazon EKS User Guide
CNI Configuration Variables

« The L-IPAM daemon is responsible for attaching elastic network interfaces to instances, assigning
secondary IP addresses to elastic network interfaces, and maintaining a "warm pool" of IP addresses on
each node for assignment to Kubernetes pods when they are scheduled.

« The CNI plugin itself is responsible for wiring the host network (for example, configuring the interfaces
and virtual Ethernet pairs) and adding the correct interface to the pod namespace.

For more information about the design and networking configuration, see CNI plugin for Kubernetes
networking over AWS VPC.

Elastic network interface and secondary IP address limitations by Amazon EC2 instance types are
applicable. In general, larger instances can support more IP addresses. For more information, see IP
Addresses Per Network Interface Per Instance Type in the Amazon EC2 User Guide for Linux Instances.

CNI Configuration Variables

The Amazon VPC CNI plugin for Kubernetes supports a number of configuration options, which are set
through environment variables. The following environment variables are available, and all of them are
optional.

AWS_VPC_CNI_NODE_PORT_ SUPPORT
Type: Boolean
Default: true

Specifies whether NodePort services are enabled on a worker node's primary network interface.
This requires additional iptables rules and that the kernel's reverse path filter on the primary
interface is set to loose.

AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG
Type: Boolean
Default: false

Specifies that your pods may use subnets and security groups (within the same VPC as your

control plane resources) that are independent of your cluster's resourcesVpcConfig. By default,
pods share the same subnet and security groups as the worker node's primary interface. Setting

this variable to true causes ipamD to use the security groups and subnets in a worker node's
ENIConfig for elastic network interface allocation. You must create an ENIConfig custom
resource definition for each subnet that your pods will reside in, and then annotate each worker
node to use a specific ENIConfig (multiple worker nodes can be annotated with the same
ENIConfig). Worker nodes can only be annotated with a single ENIConfig at a time, and the
subnet in the ENIConfig must belong to the same Availability Zone that the worker node resides in.
For more information, see CNI Custom Networking (p. 95).

AWS_VPC_K8S_CNI_EXTERNALSNAT
Type: Boolean
Default: false

Specifies whether an external NAT gateway should be used to provide SNAT of secondary ENI IP
addresses. If set to true, the SNAT iptables rule and off-VPC IP rule are not applied, and these
rules are removed if they have already been applied.

Disable SNAT if you need to allow inbound communication to your pods from external VPNs, direct
connections, and external VPCs, and your pods do not need to access the Internet directly via an

88

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

Amazon EKS User Guide
Installing CoreDNS

Internet Gateway. However, your nodes must be running in a private subnet and connected to the
internet through an AWS NAT Gateway or another external NAT device.

For more information, see External Source Network Address Translation (SNAT) (p. 92).
WARM_ENI_TARGET

Type: Integer
Default: 1

Specifies the number of free elastic network interfaces (and all of their available IP addresses) that
the ipamD daemon should attempt to keep available for pod assignment on the node. By default,
ipamD attempts to keep 1 elastic network interface and all of its IP addresses available for pod
assignment.

Note

The number of IP addresses per network interface varies by instance type. For more
information, see IP Addresses Per Network Interface Per Instance Type in the Amazon EC2
User Guide for Linux Instances.

For example, an m4 . 4x1arge launches with 1 network interface and 30 IP addresses. If 5 pods are
placed on the node and 5 free IP addresses are removed from the IP address warm pool, then ipamD
attempts to allocate more interfaces until WARM_ENI_TARGET free interfaces are available on the
node.

Note
If WARM_IP TARGET is set, then this environment variable is ignored and the
WARM_IP_TARGET behavior is used instead.

WARM_IP_TARGET
Type: Integer
Default: None

Specifies the number of free IP addresses that the ipamb daemon should attempt to keep available
for pod assignment on the node. For example, if WARM_IP_TARGET is set to 10, then ipamD
attempts to keep 10 free IP addresses available at all times. If the elastic network interfaces on the
node are unable to provide these free addresses, ipamD attempts to allocate more interfaces until
WARM_IP_TARGET free IP addresses are available.

Note
This environment variable overrides WARM_ENI_TARGET behavior.

Installing CoreDNS

Clusters that were created with Kubernetes version 1.10 shipped with kube-dns as the default DNS and
service discovery provider. If you have updated from a 1.10 cluster and you want to use CoreDNS for DNS
and service discovery, you must install CoreDNS and remove kube-dns.

To check if your cluster is already running CoreDNS, use the following command.

kubectl get pod -n kube-system -1 k8s-app=kube-dns

If the output shows coredns in the pod names, you're already running CoreDNS in your cluster. If not,
use the following procedure to update your DNS and service discovery provider to CoreDNS.

89

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

Amazon EKS User Guide
Installing CoreDNS

Note
The service for CoreDNS is still called kube-dns for backward compatibility.

Choose the tab below that corresponds to your desired CoreDNS installation method:
eksctl
To install CoreDNS on an updated Amazon EKS cluster with eksctl

This procedure assumes that you have installed eksctl, and that your eksct1 version is at least
0.1.37. You can check your version with the following command:

eksctl version

For more information on installing or upgrading eksctl, see Installing or Upgrading
eksctl (p. 120).

1. Run the following command to install coredns, replacing the red text with your cluster name:

eksctl utils install-coredns --name dev --approve

Output:

[#] wusing region us-west-2

[#] created "kube-system:ServiceAccount/coredns"

[#] created "ClusterRole.rbac.authorization.k8s.io/system:coredns™"

[#] created "ClusterRoleBinding.rbac.authorization.k8s.io/system:coredns"
[#] created "kube-system:ConfigMap/coredns"

[#] created "kube-system:Deployment.extensions/coredns"

[#] replaced "kube-system:Service/kube-dns"

[#] waiting for 2 of "coredns" pods to become ready

[#] deleted "kube-dns"

[#] ™"coredns" is now up-to-date

2. Check the current version of your cluster's coredns deployment.

kubectl describe deployment coredns --namespace kube-system | grep Image | cut -d
"/" _f 3

Output:

coredns:v1l.1.3

The recommended coredns versions for their corresponding Kubernetes versions are as
follows:

« Kubernetes 1.13:1.2.6
« Kubernetes 1.12:1.2.2
e« Kubernetes 1.11:1.1.3

If your current coredns version doesn't match the recommendation for your cluster version,
update the coredns deployment to use the recommended image with the following command,
replacing the red text with your cluster name:

eksctl utils update-coredns --name dev --approve

90

Amazon EKS User Guide
Installing CoreDNS

kubectl

To install CoreDNS on an updated Amazon EKS cluster with kubectl

1. Addthe {"eks.amazonaws.com/component": "kube-dns"} selector to the kube-dns
deployment for your cluster. This prevents the two DNS deployments from competing for
control of the same set of labels.

kubectl patch -n kube-system deployment/kube-dns --patch \
'{"spec":{"selector":{"matchLabels":{"eks.amazonaws.com/component":"kube-dns"}}}}"'

2. Deploy CoreDNS to your cluster.

a. Set your cluster's DNS IP address to the DNS_CLUSTER_IP environment variable.

export DNS_CLUSTER_IP=$(kubectl get sve -n kube-system kube-dns -o
jsonpath="'{.spec.clusterIP}')

b. Set your cluster's AWS Region to the REGION environment variable.

export REGION="us-west-2"

c. Download the CoreDNS manifest from the Amazon EKS resource bucket.

curl -o dns.yaml https://amazon-eks.s3-us-west-2.amazonaws.com/
cloudformation/2019-02-11/dns.yaml

d. Replace the variable placeholders in the dns.yaml file with your environment variable
values and apply the updated manifest to your cluster. The following command completes
this in one step.

cat dns.yaml | sed -e "s/REGION/$REGION/g" | sed -e "s/DNS_CLUSTER_IP/
$DNS_CLUSTER_IP/g" | kubectl apply -f -

e. Fetch the coredns pod name from your cluster.

COREDNS_POD=$(kubectl get pod -n kube-system -1 eks.amazonaws.com/
component=coredns \
-o jsonpath='{.items[0].metadata.name}"')

f. Query the coredns pod to ensure that it's receiving requests.

kubectl get --raw /api/vl/namespaces/kube-system/pods/$COREDNS_POD:9153/proxy/
metrics \
| grep 'coredns_dns_request_count_total’

Note
It might take several minutes for the expected output to return properly,
depending on the rate of DNS requests in your cluster.

Expected output (the number in red is the DNS request count total):

HELP coredns_dns_request_count_total Counter of DNS requests made per zone,
protocol and family.

TYPE coredns_dns_request_count_total counter
coredns_dns_request_count_total{family="1",proto="udp",server="dns://:53",zone="/"} 23

3. Scale down the kube-dns deployment to zero replicas
91

Amazon EKS User Guide
External SNAT

kubectl scale -n kube-system deployment/kube-dns --replicas=0

4. Clean up the old kube-dns resources.

kubectl delete -n kube-system deployment/kube-dns serviceaccount/kube-dns
configmap/kube-dns

External Source Network Address Translation
(SNAT)

By default, the Amazon VPC CNI plugin for Kubernetes configures pods with source network address
translation (SNAT) enabled. This sets the return address for a packet to the primary public IP of the
instance and allows for communication with the internet. In this default configuration, when you use an
internet gateway and a public address, the return packet is routed to the correct Amazon EC2 instance.

92

https://github.com/aws/amazon-vpc-cni-k8s

Amazon EKS User Guide
External SNAT

N
~ ’ CNI performs SNAT: :

|
| 101.05<>54.123
|
|

]
|
|
|
Pod i
10.1.0.5 |
x"fhx
| &2

| |
| \ENI . '
| !
: EKS Mode i

| Public IP—54.1.2.3
| Secondary IP: 10.1.0.5 i
| |

%, .'"r

WPC Public Subnet—
10.1.0.0/24

However, SNAT can cause issues if traffic from another private IP space (for example, VPC peering, Transit
VPC, or Direct Connect) attempts to communicate directly to a pod that is not attached to the primary
elastic network interface of the Amazon EC2 instance. To specify that NAT be handled by an external
device (such as a NAT gateway, and not on the instance itself), you can disable SNAT on the instance by
setting the AWS_VPC_K8S_CNI_EXTERNALSNAT environment variable to true. Disable SNAT to allow
inbound communication to your pods from external VPNs, direct connections, and external VPCs, and
your pods do not need to access the internet directly via an internet gateway.

Note

SNAT is required for nodes that reside in a public subnet. To use external SNAT, your nodes
must reside in a private subnet and connect to the internet through a NAT gateway or another
external NAT device.

93

Internet
gateway

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-options/transit-vpc.html
https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-options/transit-vpc.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon EKS User Guide
External SNAT

™
\
| |
| |
| ke | ——————
| | (
<	
l ~ ’ Pod traffic sent !	
from 10.1.05	
Pod	
2 10.1.0.5	
ey

| et | -.\‘ _______
| l\-_C N | / | VPC
| |
L EKS Node

Primary 1P 10.1.0.2 /

\ _ Secondary IP: 10,1.0.5 /
VPC Private Subnat—
10.1.0.0/24

To disable SNAT on your worker nodes

1.

Edit the aws-node daemonset:

kubectl edit daemonset -n kube-system aws-node

Add the AWS_VPC_K8S_CNI_EXTERNALSNAT environment variable to the node container spec and
setitto true:

spec:
containers:
- env:
- name: AWS_VPC_K8S_CNI_EXTERNALSNAT
value: "true"

94

Amazon EKS User Guide
CNI Custom Networking

3.

- name: AWS_VPC_K8S_CNI_LOGLEVEL
value: DEBUG
- name: MY_NODE_NAME

Save the file and exit your text editor.

CNI Custom Networking

By default, when new network interfaces are allocated for pods, ipamD uses the worker node's primary
elastic network interface's security groups and subnet. However, there are use cases where your pod
network interfaces should use a different security group or subnet, within the same VPC as your control
plane security group. For example:

There are a limited number of IP addresses available in a subnet. This limits the number of pods can
be created in the cluster. Using different subnets for pod groups allows you to increase the number of
available IP addresses.

For security reasons, your pods must use different security groups or subnets than the node's primary
network interface.

The worker nodes are configured in public subnets and you want the pods to be placed in private
subnets using a NAT Gateway. For more information, see External Source Network Address Translation
(SNAT) (p. 92).

Note

The use cases discussed in this topic require Amazon VPC CNI plugin for Kubernetes version
1.4.0 or later. To check your CNI version, and upgrade if necessary, see Amazon VPC CNI Plugin
for Kubernetes Upgrades (p. 98).

Enabling this feature effectively removes an available elastic network interface (and all of its available
IP addresses for pods) from each worker node that uses it. The primary network interface for the worker
node is not used for pod placement when this feature is enabled. You should choose larger instance
types with more available elastic network interfaces if you choose to enable this feature.

To configure CNI custom networking

1.

Associate a secondary CIDR block to your cluster's VPC. For more information, see Associating a
Secondary IPv4 CIDR Block with Your VPC in the Amazon VPC User Guide.

Create a subnet in your VPC for each Availability Zone, using your secondary CIDR block. Your
custom subnets must be from a different VPC CIDR block than the subnet that your worker nodes
were launched into. For more information, see Creating a Subnet in Your VPC in the Amazon VPC
User Guide.

Edit the aws-node daemonset for your cluster:

kubectl edit daemonset -n kube-system aws-node

Add the AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG environment variable to the node container
spec and set it to true:

spec:
containers:
- env:
- name: AWS_VPC_K8S_CNI_CUSTOM NETWORK_CFG
value: "true"
- name: AWS_VPC_K8S_CNI_LOGLEVEL

95

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/cni-proposal.md
https://github.com/aws/amazon-vpc-cni-k8s
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet

Amazon EKS User Guide
CNI Custom Networking

value: DEBUG
- name: MY_NODE_NAME

5. Save the file and exit your text editor.
6. Define a new ENIConfig custom resource for your cluster.

a.

Create a file called ENIConfig.yaml and paste the following content into it:

apiVersion: apiextensions.k8s.io/vlbetal
kind: CustomResourceDefinition
metadata:
name: eniconfigs.crd.k8s.amazonaws.com
spec:
scope: Cluster
group: crd.k8s.amazonaws.com
version: vlalphal
names:
plural: eniconfigs
singular: eniconfig
kind: ENIConfig

Apply the file to your cluster with the following command:

kubectl apply -f ENIConfig.yaml

7. Create an ENIConfig custom resource for each subnet that you want to schedule pods in.

a.

Create a unique file for each elastic network interface configuration to use with the following
information. Replacing the subnet and security group IDs with your own values. If you don't
have a specific security group that you want to attach for your pods, you can leave that value
empty for now. Later, you will specify the worker node security group in the ENIConfig.

For this example, the file is called custom-pod-netconfig.yaml.

Note
Each subnet and security group combination requires its own custom resource.

apivVersion: crd.k8s.amazonaws.com/vlalphal
kind: ENIConfig
metadata:

name: custom-pod-netconfig
spec:

securityGroups:

- sg-0dff363a7d37c3c61
subnet: subnet-017b472c2f79fdf96

Apply each custom resource file that you created earlier to your cluster with the following
command:

kubectl apply -f custom-pod-netconfig.yaml

8. Create a new worker node group for each ENIConfig that you configured, and limit the Auto
Scaling group to the same Availability Zone as the ENIConfig.

Follow the steps in Launching Amazon EKS Worker Nodes (p. 57) to create each new worker node
group. When you create each group, apply the k8s.amazonaws .com/eniConfig label to the node
group, and set the value to the name of the ENIConfig to use for that worker node group.

If you use eksctl to create your worker node groups, add the following flag to your create
cluster command:

96

Amazon EKS User Guide
CNI Custom Networking

10.

--node-labels k8s.amazonaws.com/eniConfig=custom-pod-netconfig

« If you use the Amazon EKS-provided AWS CloudFormation templates to create your worker node
groups, add the following option to the BootstrapArguments field in the AWS CloudFormation
console:

--kubelet-extra-args '--node-labels=zk8s.amazonaws.com/eniConfig=custom-pod-netconfig"'

After your worker node groups are created, record the security group that was created for each
worker node group and apply it to its associated ENIConfig. Edit each ENIConfig with the
following command, replacing the red text with your value):

kubectl edit eniconfig.crd.k8s.amazonaws.com/custom-pod-netconfig

The spec section should look like this:

spec:
securityGroups:
- sg-08052d900a2c7fboOa
subnet: subnet-017b472c2f79fdf96

If you have any worker nodes in your cluster that had pods placed on them before you completed
this procedure, you should terminate them. Only new nodes that are registered with the
k8s.amazonaws.com/eniConfig label will use the new custom networking feature.

To automatically apply an ENIConfig to a node based on its Availability Zone

By default, Kubernetes applies the availability zone of a node to the failure-
domain.beta.kubernetes.io/zone label. You can name your ENIConfig custom resources
after each Availability Zone in your VPC, and then specify this label as the value of the
ENI_CONFIG_LABEL_DEF environment variable in the aws-node container spec for your worker
nodes.

spec:
containers:
- env:
- name: AWS_VPC_K8S_CNI_CUSTOM NETWORK_CFG
value: "true"
- name: ENI_CONFIG_LABEL_DEF
value: failure-domain.beta.kubernetes.io/zone
- name: AWS_VPC_K8S_CNI_LOGLEVEL
value: DEBUG
- name: MY NODE_NAME

For example, if subnet-0c4678ec01ce68b24 is in the us-east-1a Availability Zone, you could
use the following ENIConfig for that Availability Zone by naming it us-east-1a:

apivVersion: crd.k8s.amazonaws.com/vlalphal
kind: ENIConfig
metadata:
name: us-east-1la
spec:
securityGroups:
- 5g-08052d900a2c7fboOa

97

Amazon EKS User Guide
CNI Upgrades

‘ subnet: subnet-0c4678ec0lce68b24

Amazon VPC CNI Plugin for Kubernetes Upgrades

When you launch an Amazon EKS cluster, we apply a recent version of the Amazon VPC CNI plugin

for Kubernetes to your cluster (the absolute latest version of the plugin is available on GitHub for a
short grace period before new clusters are switched over to use it). However, Amazon EKS does not
automatically upgrade the CNI plugin on your cluster when new versions are released. You must upgrade
the CNI plugin manually to get the latest version on existing clusters.

The latest CNI version available on GitHub is 1.5.3. You can view the different releases available for the
plugin, and read the release notes for each version on GitHub.

Use the following procedures to check your CNI version and upgrade to the latest version.
To check your Amazon VPC CNI Plugin for Kubernetes version

« Use the following command to print your cluster's CNI version:

kubectl describe daemonset aws-node --namespace kube-system | grep Image | cut -d "/" -
£ 2

Output:

amazon-k8s-cni:l.4.1

In this example output, the CNI version is 1.4.1, which is earlier than the current version, 1.5.3. Use
the following procedure to upgrade the CNI.

To upgrade the Amazon VPC CNI Plugin for Kubernetes

o Use the following command to upgrade your CNI version to the latest version:

« For Kubernetes 1.10 clusters:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl.5/aws-k8s-cni-1.10.yaml

« For all other Kubernetes versions:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
release-1.5/config/vl.5/aws-k8s-cni.yaml

Installing Calico on Amazon EKS

Project Calico is a network policy engine for Kubernetes. With Calico network policy enforcement, you
can implement network segmentation and tenant isolation. This is useful in multi-tenant environments
where you must isolate tenants from each other or when you want to create separate environments

for development, staging, and production. Network policies are similar to AWS security groups in that
you can create network ingress and egress rules. Instead of assigning instances to a security group, you
assign network policies to pods using pod selectors and labels. The following procedure shows you how
to install Calico on your Amazon EKS cluster.

98

https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/releases
https://github.com/aws/amazon-vpc-cni-k8s/releases
https://github.com/aws/amazon-vpc-cni-k8s/releases
https://www.projectcalico.org/

Amazon EKS User Guide
Stars Policy Demo

To install Calico on your Amazon EKS cluster

1. Apply the Calico manifest from the aws /amazon-vpc-cni-k8s GitHub project. This manifest
creates DaemonSets in the kube-system namespace.

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/release-1.5/
config/vl.5/calico.yaml

2. Watch the kube-system DaemonSets and wait for the calico-node DaemonSet to have the
DESIRED number of pods in the READY state. When this happens, Calico is working.

kubectl get daemonset calico-node --namespace kube-system

Output:

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE

calico-node 3 3 3 3 3 <none>
38s

To delete Calico from your Amazon EKS cluster

« If you are done using Calico in your Amazon EKS cluster, you can delete the DaemonSet with the
following command:

kubectl delete -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/release-1.5/
config/vl.5/calico.yaml

Stars Policy Demo

This section walks through the Stars Policy Demo provided by the Project Calico documentation. The
demo creates a frontend, backend, and client service on your Amazon EKS cluster. The demo also creates
a management GUI that shows the available ingress and egress paths between each service.

Before you create any network policies, all services can communicate bidirectionally. After you apply the

network policies, you can see that the client can only communicate with the frontend service, and the
backend can only communicate with the frontend.

To run the Stars Policy demo

1. Apply the frontend, backend, client, and management Ul services:

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/00-namespace.yaml

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/0l-management-ui.yaml

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/02-backend.yaml

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/03-frontend.yaml

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/04-client.yaml

2. Wait for all of the pods to reach the Running status:

99

https://github.com/aws/amazon-vpc-cni-k8s
https://docs.projectcalico.org/v3.1/getting-started/kubernetes/tutorials/stars-policy/

Amazon EKS User Guide
Stars Policy Demo

kubectl get pods --all-namespaces --watch

3. To connect to the management Ul, forward your local port 9001 to the management-ui service
running on your cluster:

kubectl port-forward service/management-ui -n management-ui 9001

4. Open a browser on your local system and point it to http://localhost:9007/. You should see the
management Ul. The C node is the client service, the F node is the frontend service, and the B node
is the backend service. Each node has full communication access to all other nodes (as indicated by
the bold, colored lines).

T

5. Apply the following network policies to isolate the services from each other:

100

http://localhost:9001/

Amazon EKS User Guide
Stars Policy Demo

kubectl apply -n stars -f https://docs.projectcalico.org/v3.3/getting-started/
kubernetes/tutorials/stars-policy/policies/default-deny.yaml
kubectl apply -n client -f https://docs.projectcalico.org/v3.3/getting-started/
kubernetes/tutorials/stars-policy/policies/default-deny.yaml

Refresh your browser. You see that the management Ul can no longer reach any of the nodes, so
they don't show up in the UL

Apply the following network policies to allow the management Ul to access the services:

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/policies/allow-ui.yaml

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/policies/allow-ui-client.yaml

Refresh your browser. You see that the management Ul can reach the nodes again, but the nodes
cannot communicate with each other.

101

Amazon EKS User Guide
Stars Policy Demo

9. Apply the following network policy to allow traffic from the frontend service to the backend service:

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/policies/backend-policy.yaml

10. Apply the following network policy to allow traffic from the client namespace to the frontend
service:

kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/policies/frontend-policy.yaml

102

Amazon EKS User Guide
Stars Policy Demo

11.

(Optional) When you are done with the demo, you can delete its resources with the following
commands:

kubectl delete -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/04-client.yaml

kubectl delete -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/03-frontend.yaml

kubectl delete -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/02-backend.yaml

kubectl delete -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/0l-management-ui.yaml

Amazon EKS User Guide
Stars Policy Demo

kubectl delete -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/
tutorials/stars-policy/manifests/00-namespace.yaml

104

Amazon EKS User Guide
Installing kubectl

Managing Cluster Authentication

Amazon EKS uses IAM to provide authentication to your Kubernetes cluster (through the aws eks
get-token command, available in version 1.16.156 or greater of the AWS CLI, or the AWS IAM
Authenticator for Kubernetes), but it still relies on native Kubernetes Role Based Access Control
(RBAC) for authorization. This means that IAM is only used for authentication of valid IAM entities. All
permissions for interacting with your Amazon EKS cluster’s Kubernetes APl is managed through the
native Kubernetes RBAC system.

1: Pass AWS identity

S 2: Verify AWS identity
>
N —— -+
o«
kubect 4: Kubernetes action
allowed / denied Kubernetes
Master AP
Role Based Access
Control (RBAC)
3: Authorize AWS
identity with RBAC
Topics

o Installing kubectl (p. 105)

« Installing aws-iam-authenticator (p. 109)

« Create a kubeconfig for Amazon EKS (p. 112)

« Managing Users or IAM Roles for your Cluster (p. 116)

Installing kubectl

Kubernetes uses a command line utility called kubectl for communicating with the cluster API server.
The kubectl binary is available in many operating system package managers, and this option is often
much easier than a manual download and install process. You can follow the instructions for your specific
operating system or package manager in the Kubernetes documentation to install.

105

https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Amazon EKS User Guide
Installing kubectl

This topic helps you to download and install the Amazon EKS-vended kubectl binaries for macQOS, Linux,
and Windows operating systems. These binaries are identical to the upstream community versions, and
are not unique to Amazon EKS or AWS.

Note

You must use a kubectl version that is within one minor version difference of your Amazon EKS
cluster control plane . For example, a 1.12 kubect1 client should work with Kubernetes 1.11,
1.12, and 1.13 clusters.

macOS

To install kubectl on macOS

1. Download the Amazon EKS-vended kubectl binary for your cluster's Kubernetes version from
Amazon S3:

¢ Kubernetes 1.13:

curl -o kubectl https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/darwin/amdé64/kubectl

¢ Kubernetes 1.12:

curl -o kubectl https://amazon-eks.s3-us-
west-2.amazonaws.com/1.12.9/2019-06-21/bin/darwin/amdé64/kubectl

¢ Kubernetes 1.11:

curl -o kubectl https://amazon-eks.s3-us-
west-2.amazonaws.com/1.11.10/2019-06-21/bin/darwin/amdé64/kubectl

2. (Optional) Verify the downloaded binary with the SHA-256 sum for your binary.
a. Download the SHA-256 sum for your cluster's Kubernetes version for macOS:

e Kubernetes 1.13:

curl -o kubectl.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/darwin/amdé64/kubectl.sha256

« Kubernetes 1.12:

curl -o kubectl.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.12.9/2019-06-21/bin/darwin/amd64/kubectl.sha256

¢ Kubernetes 1.11:

curl -o kubectl.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.11.10/2019-06-21/bin/darwin/amdé64/kubectl.sha256

b. Check the SHA-256 sum for your downloaded binary.

openssl shal -sha256 kubectl

c¢. Compare the generated SHA-256 sum in the command output against your downloaded
SHA-256 file. The two should match.

3. Apply execute permissions to the binary.

106

Amazon EKS User Guide
Installing kubectl

chmod +x ./kubectl

4. Copy the binary to a folder in your PATH. If you have already installed a version of kubectl, then
we recommend creating a $HOME /bin/kubectl and ensuring that $HOME /bin comes first in
your $PATH.

mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl && export PATH=$HOME/bin:$PATH

5. (Optional) Add the $HOME /bin path to your shell initialization file so that it is configured when
you open a shell.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bash profile

6. After you install kubectl, you can verify its version with the following command:

kubectl version --short --client

Linux

To install kubectl on Linux

1. Download the Amazon EKS-vended kubectl binary for your cluster's Kubernetes version from
Amazon S3:

« Kubernetes 1.13:

curl -o kubectl https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/linux/amdé64/kubectl

¢ Kubernetes 1.12:

curl -o kubectl https://amazon-eks.s3-us-
west-2.amazonaws.com/1.12.9/2019-06-21/bin/linux/amdé64/kubectl

¢ Kubernetes 1.11:

curl -o kubectl https://amazon-eks.s3-us-
west-2.amazonaws.com/1.11.10/2019-06-21/bin/linux/amdé64/kubectl

2. (Optional) Verify the downloaded binary with the SHA-256 sum for your binary.
a. Download the SHA-256 sum for your cluster's Kubernetes version for Linux:

¢ Kubernetes 1.13:

curl -o kubectl.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/linux/amdé64/kubectl.sha256

« Kubernetes 1.12:

curl -o kubectl.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.12.9/2019-06-21/bin/linux/amdé4/kubectl.sha256

« Kubernetes 1.11:

107

Amazon EKS User Guide
Installing kubectl

curl -o kubectl.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.11.10/2019-06-21/bin/linux/amdé64/kubectl.sha256

b. Check the SHA-256 sum for your downloaded binary.

openssl shal -sha256 kubectl

c¢. Compare the generated SHA-256 sum in the command output against your downloaded
SHA-256 file. The two should match.

3. Apply execute permissions to the binary.

chmod +x ./kubectl

4. Copy the binary to a folder in your PATH. If you have already installed a version of kubectl, then
we recommend creating a $HOME /bin/kubectl and ensuring that $HOME /bin comes first in
your $PATH.

mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl && export PATH=$HOME/bin:$PATH

5. (Optional) Add the $HOME /bin path to your shell initialization file so that it is configured when
you open a shell.

Note
This step assumes you are using the Bash shell; if you are using another shell, change
the command to use your specific shell initialization file.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bashrc

6. After you install kubectl, you can verify its version with the following command:

kubectl version --short --client

Windows

To install kubectl on Windows

Open a PowerShell terminal.

2. Download the Amazon EKS-vended kubectl binary for your cluster's Kubernetes version from
Amazon S3:

¢ Kubernetes 1.13:

curl -o kubectl.exe https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/windows/amdé64/kubectl.exe

« Kubernetes 1.12:

curl -o kubectl.exe https://amazon-eks.s3-us-
west-2.amazonaws.com/1.12.9/2019-06-21/bin/windows/amdé64/kubectl.exe

« Kubernetes 1.11:

curl -o kubectl.exe https://amazon-eks.s3-us-
west-2.amazonaws.com/1.11.10/2019-06-21/bin/windows/amdé64/kubectl.exe

108

Amazon EKS User Guide
Installing aws-iam-authenticator

3. (Optional) Verify the downloaded binary with the SHA-256 sum for your binary.
a. Download the SHA-256 sum for your cluster's Kubernetes version for Windows:

« Kubernetes 1.13:

curl -o kubectl.exe.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/windows/amdé64/kubectl.exe.sha256

« Kubernetes 1.12:

curl -o kubectl.exe.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.12.9/2019-06-21/bin/windows/amd64/kubectl.exe.sha256

¢ Kubernetes 1.11:

curl -o kubectl.exe.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.11.10/2019-06-21/bin/windows/amdé64/kubectl.exe.sha256

b. Check the SHA-256 sum for your downloaded binary.

Get-FileHash kubectl.exe

c¢. Compare the generated SHA-256 sum in the command output against your downloaded
SHA-256 file. The two should match, although the PowerShell output will be uppercase.

4. Copy the binary to a folder in your PATH. If you have an existing directory in your PATH that
you use for command line utilities, copy the binary to that directory. Otherwise, complete the
following steps.

a. Create a new directory for your command line binaries, such as C:\bin.

b. Copy the kubectl.exe binary to your new directory.

c. Edit your user or system PATH environment variable to add the new directory to your PATH.
d. Close your PowerShell terminal and open a new one to pick up the new PATH variable.

5. After you install kubectl, you can verify its version with the following command:

kubectl version --short --client

Installing aws-iam-authenticator

Amazon EKS uses |IAM to provide authentication to your Kubernetes cluster through the AWS IAM
Authenticator for Kubernetes. You can configure the stock kubectl client to work with Amazon EKS by
installing the AWS IAM Authenticator for Kubernetes and modifying your kubectl configuration file to
use it for authentication.

macOS
To install aws-iam-authenticator with Homebrew

The easiest way to install the aws-iam-authenticator is with Homebrew.

1. If you do not already have Homebrew installed on your Mac, install it with the following
command.

109

https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://brew.sh/
https://brew.sh/

Amazon EKS User Guide
Installing aws-iam-authenticator

/usr/bin/ruby -e "$(curl -£fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

2. Install the aws-iam-authenticator with the following command.

brew install aws-iam-authenticator

3. Test that the aws-iam-authenticator binary works.

aws-iam-authenticator help

To install aws-iam-authenticator on macOS

You can also install the AWS-vended version of the aws-iam-authenticator by following these
steps.

1. Download the Amazon EKS-vended aws-iam-authenticator binary from Amazon S3:

curl -o aws-iam-authenticator https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/darwin/amdé64/aws-iam-authenticator

2. (Optional) Verify the downloaded binary with the SHA-256 sum provided in the same bucket
prefix.

a. Download the SHA-256 sum for your system.

curl -o aws-iam-authenticator.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/darwin/amdé64/aws-iam-
authenticator.sha256

b. Check the SHA-256 sum for your downloaded binary.

openssl shal -sha256 aws-iam-authenticator

c. Compare the generated SHA-256 sum in the command output against your downloaded
aws-iam-authenticator.sha256 file. The two should match.

3. Apply execute permissions to the binary.

chmod +x ./aws-iam-authenticator

4. Copy the binary to a folder in your $PATH. We recommend creating a $HOME /bin/aws-iam-
authenticator and ensuring that $HOME /bin comes first in your $PATH.

mkdir -p $HOME/bin && cp ./aws-iam-authenticator $HOME/bin/aws-iam-authenticator &&
export PATH=$HOME/bin:$PATH

5. Add $HOME/bin to your PATH environment variable.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bash_profile

6. Test that the aws-iam-authenticator binary works.

aws-iam-authenticator help

110

Amazon EKS User Guide
Installing aws-iam-authenticator

Linux

To install aws-iam-authenticator on Linux

1. Download the Amazon EKS-vended aws-iam-authenticator binary from Amazon S3:

curl -o aws-iam-authenticator https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/linux/amdé64/aws-iam-authenticator

2. (Optional) Verify the downloaded binary with the SHA-256 sum provided in the same bucket

prefix.

a. Download the SHA-256 sum for your system.

curl -o aws-iam-authenticator.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/linux/amd64/aws-iam-
authenticator.sha256

b. Check the SHA-256 sum for your downloaded binary.

openssl shal -sha256 aws-iam-authenticator

c¢. Compare the generated SHA-256 sum in the command output against your downloaded

aws-iam-authenticator.sha256 file. The two should match.

3. Apply execute permissions to the binary.

chmod +x ./aws-iam-authenticator

4. Copy the binary to a folder in your $PATH. We recommend creating a $HOME /bin/aws-iam-

authenticator and ensuring that $HOME /bin comes first in your $PATH.

export PATH=$HOME/bin:$PATH

mkdir -p $HOME/bin && cp ./aws-iam-authenticator $HOME/bin/aws-iam-authenticator &&

5. Add $HOME/bin to your PATH environment variable.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bashrc

6. Test that the aws-iam-authenticator binary works.

aws-iam-authenticator help

Windows

To install aws-iam-authenticator on Windows with Chocolatey

1. If you do not already have Chocolatey installed on your Windows system, see Installing
Chocolatey.

2. Open a PowerShell terminal window and install the aws-iam-authenticator package with

the following command:

choco install -y aws-iam-authenticator

3. Test that the aws-iam-authenticator binary works.

111

https://chocolatey.org/install
https://chocolatey.org/install

Amazon EKS User Guide
Create a kubeconfig for Amazon EKS

aws-iam-authenticator help

To install aws-iam-authenticator on Windows

1. Open a PowerShell terminal window and download the Amazon EKS-vended aws-iam-
authenticator binary from Amazon S3:

curl -o aws-iam-authenticator.exe https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/windows/amd64/aws-iam-authenticator.exe

2. (Optional) Verify the downloaded binary with the SHA-256 sum provided in the same bucket
prefix.

a. Download the SHA-256 sum for your system.

curl -o aws-iam-authenticator.sha256 https://amazon-eks.s3-us-
west-2.amazonaws.com/1.13.7/2019-06-11/bin/windows/amd64/aws-iam-
authenticator.exe.sha256

b. Check the SHA-256 sum for your downloaded binary.

Get-FileHash aws-iam-authenticator.exe

c. Compare the generated SHA-256 sum in the command output against your downloaded
SHA-256 file. The two should match, although the PowerShell output will be uppercase.

3. Copy the binary to a folder in your PATH. If you have an existing directory in your PATH that
you use for command line utilities, copy the binary to that directory. Otherwise, complete the
following steps.

Create a new directory for your command line binaries, such as C:\bin.

a
b. Copythe aws-iam-authenticator.exe binary to your new directory.

c. Edit your user or system PATH environment variable to add the new directory to your PATH.
d

. Close your PowerShell terminal and open a new one to pick up the new PATH variable.
4. Test that the aws-iam-authenticator binary works.

aws-iam-authenticator help

If you have an existing Amazon EKS cluster, create a kubeconfig file for that cluster. For more
information, see Create a kubeconfig for Amazon EKS (p. 112). Otherwise, see Creating an Amazon
EKS Cluster (p. 20) to create a new Amazon EKS cluster.

Create a kubeconfig for Amazon EKS

In this section, you create a kubeconfig file for your cluster (or update an existing one).

This section offers two procedures to create or update your kubeconfig. You can quickly create or update
a kubeconfig with the AWS CLI update-kubeconfig command by using the first procedure, or you can
create a kubeconfig manually with the second procedure.

Amazon EKS uses the aws eks get-token command, available in version 1.16.156 or greater of the AWS
CLI or the AWS IAM Authenticator for Kubernetes with kubectl for cluster authentication. If you have

112

https://github.com/kubernetes-sigs/aws-iam-authenticator

Amazon EKS User Guide
Create a kubeconfig for Amazon EKS

installed the AWS CLI on your system, then by default the AWS IAM Authenticator for Kubernetes will
use the same credentials that are returned with the following command:

aws sts get-caller-identity

For more information, see Configuring the AWS CLI in the AWS Command Line Interface User Guide.

To create your kubeconfig file with the AWS CLI

1.

Ensure that you have at least version 1.16.156 of the AWS CLI installed. To install or upgrade the
AWS CLlI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User
Guide.

Note

Your system's Python version must be 2.7.9 or greater. Otherwise, you receive hostname
doesn't match errors with AWS CLI calls to Amazon EKS. For more information, see What
are "hostname doesn't match" errors? in the Python Requests FAQ.

You can check your AWS CLI version with the following command:

aws --version

Important

Package managers such yum, apt-get, or Homebrew for macOS are often behind several
versions of the AWS CLI. To ensure that you have the latest version, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

Use the AWS CLI update-kubeconfig command to create or update your kubeconfig for your cluster.

« By default, the resulting configuration file is created at the default kubeconfig path (. kube/
config) in your home directory or merged with an existing kubeconfig at that location. You can
specify another path with the --kubeconfig option.

« You can specify an IAM role ARN with the --role-arn option to use for authentication when you
issue kubectl commands. Otherwise, the IAM entity in your default AWS CLI or SDK credential
chain is used. You can view your default AWS CLI or SDK identity by running the aws sts get-
caller-identity command.

« For more information, see the help page with the aws eks update-kubeconfig help command or
see update-kubeconfig in the AWS CLI Command Reference.

aws eks --region region update-kubeconfig --name cluster_ name

Test your configuration.

kubectl get svc

Note

If you receive the error "aws-iam-authenticator": executable file not found
in $PATH, your kubectl isn't configured for Amazon EKS. For more information, see
Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or Access
Denied (kubectl) (p. 180) in the troubleshooting section.

Output:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

113

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference/eks/update-kubeconfig.html

Amazon EKS User Guide
Create a kubeconfig for Amazon EKS

svc/kubernetes ClusterIP 10.100.0.1 <none> 443 /TCP im

To create your kubeconfig file manually

1. Create the default ~/ . kube directory if it does not already exist.

mkdir -p ~/.kube

2. Open your favorite text editor and copy one of the kubeconfig code blocks below into it,
depending on your preferred client token method.

« To use the AWS CLI aws eks get-token command (requires at least version 1.16.156 of the AWS
CLI):

apiversion: vl
clusters:
- cluster:
server: <endpoint-url>
certificate-authority-data: <baseé64-encoded-ca-cert>
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: aws
name: aws
current-context: aws
kind: Config
preferences: {}
users:
- name: aws
user:
exec:
apiVersion: client.authentication.k8s.io/vlalphal
command: aws
args:
- "eks"
- "get-token"
- "--cluster-name"
- "<cluster-name>"
- "--role"
- "<role-arn>"
env:
— name: AWS_PROFILE
value: "<aws-profile>"

¢ To use the AWS IAM Authenticator for Kubernetes:

apiversion: vl
clusters:
- cluster:
server: <endpoint-url>
certificate-authority-data: <base64-encoded-ca-cert>
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: aws
name: aws
current-context: aws
kind: Config
preferences: {}

114

https://github.com/kubernetes-sigs/aws-iam-authenticator

Amazon EKS User Guide
Create a kubeconfig for Amazon EKS

10.

11.

users:
- name: aws
user:
exec:
apiversion: client.authentication.k8s.io/vlalphal
command: aws-iam-authenticator

args:
- "token"
- "_i"
- "<cluster-name>"
- "-r"
- "<role-arn>"
env:

— name: AWS_PROFILE
value: "<aws-profile>"

Replace the <endpoint-url> with the endpoint URL that was created for your cluster.

Replace the <base64-encoded-ca-cert> with the certificateAuthority.data that was
created for your cluster.

Replace the <cluster-name> with your cluster name.

(Optional) To assume an IAM role to perform cluster operations instead of the default AWS
credential provider chain, uncomment the -r or --role and <role-arn> lines and substitute an
IAM role ARN to use with your user.

(Optional) To always use a specific named AWS credential profile (instead of the default AWS
credential provider chain), uncomment the env lines and substitute <aws-profile> with the
profile name to use.

Save the file to the default kubectl folder, with your cluster name in the file name. For example, if
your cluster name is devel, save the file to ~/ .kube/config-devel.

Add that file path to your KUBECONFIG environment variable so that kubectl knows where to look
for your cluster configuration.

export KUBECONFIG=$KUBECONFIG:~/.kube/config-devel

(Optional) Add the configuration to your shell initialization file so that it is configured when you
open a shell.

« For Bash shells on macOS:

echo 'export KUBECONFIG=$KUBECONFIG:~/.kube/config-devel' >> ~/.bash_profile

« For Bash shells on Linux:

echo 'export KUBECONFIG=$KUBECONFIG:~/.kube/config-devel' >> ~/.bashrc

Test your configuration.

kubectl get svec

Note

If you receive the error "aws-iam-authenticator": executable file not found
in $PATH, your kubectl isn't configured for Amazon EKS. For more information, see
Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or Access
Denied (kubectl) (p. 180) in the troubleshooting section.

Output:

115

Amazon EKS User Guide
Managing Users or IAM Roles for your Cluster

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svce/kubernetes ClusterIP 10.100.0.1 <none> 443 /TCP im

Managing Users or IAM Roles for your Cluster

When you create an Amazon EKS cluster, the IAM entity user or role, such as a federated user that
creates the cluster, is automatically granted system:masters permissions in the cluster's RBAC
configuration. To grant additional AWS users or roles the ability to interact with your cluster, you must
edit the aws-auth ConfigMap within Kubernetes.

Note

For more information about different IAM identities, see Identities (Users, Groups, and Roles) in
the IAM User Guide. For more information on Kubernetes RBAC configuration, see Using RBAC
Authorization.

The aws-auth ConfigMap is applied as part of the Getting Started with Amazon EKS (p. 3) guide which
provides a complete end-to-end walkthrough from creating an Amazon EKS cluster to deploying a
sample Kubernetes application. It is initially created to allow your worker nodes to join your cluster, but
you also use this ConfigMap to add RBAC access to IAM users and roles. If you have not launched worker
nodes and applied the aws-auth ConfigMap, you can do so with the following procedure.

To apply the aws-auth ConfigMap to your cluster

1.

Check to see if you have already applied the aws-auth ConfigMap.

kubectl describe configmap -n kube-system aws-auth

If you receive an error stating "Exrror from server (NotFound): configmaps "aws-auth"
not found", then proceed with the following steps to apply the stock ConfigMap.

Download, edit, and apply the AWS authenticator configuration map.

a. Download the configuration map:

curl -o aws-auth-cm.yaml https://amazon-eks.s3-us-west-2.amazonaws.com/
cloudformation/2019-02-11/aws-auth-cm.yaml

b. Open the file with your favorite text editor. Replace the <ARN of instance role (not
instance profile)> snippet with the Amazon Resource Name (ARN) of the IAM role that is
associated with your worker nodes, and save the file. You can inspect the AWS CloudFormation
stack outputs for your worker node groups and look for the following values:

« InstanceRoleARN (for worker node groups that were created with eksct1)

» NodelnstanceRole (for worker node groups that were created with Amazon EKS-vended AWS
CloudFormation templates in the AWS Management Console)

Important
Do not modify any other lines in this file.

apivVersion: vl
kind: ConfigMap
metadata:
name: aws-auth
namespace: kube-system
data:

116

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Amazon EKS User Guide
Managing Users or IAM Roles for your Cluster

3.

mapRoles: |
- rolearn: <ARN of instance role (not instance profile)>
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes

c. Apply the configuration. This command may take a few minutes to finish.

kubectl apply -f aws-auth-cm.yaml

Note

If you receive the error "aws-iam-authenticator": executable file

not found in $PATH, your kubectl isn't configured for Amazon EKS. For more
information, see Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or
Access Denied (kubectl) (p. 180) in the troubleshooting section.

Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

To add an IAM user or role to an Amazon EKS cluster

Ensure that the AWS credentials that kubectl is using are already authorized for your cluster. The
IAM user that created the cluster has these permissions by default.

Open the aws-auth ConfigMap.

kubectl edit -n kube-system configmap/aws-auth

Note
If you receive an error stating "Error from server (NotFound): configmaps "aws-
auth" not found", then use the previous procedure to apply the stock ConfigMap.

Example ConfigMap:

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will
be
reopened with the relevant failures.
#
apiversion: vi
data:
mapRoles: |
- rolearn: arn:aws:iam::111122223333:role/doc-test-worker-nodes-NodeInstanceRole-
WDO5P42N3ETB
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes
kind: ConfigMap

metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apivVersion":"v1l","data":{"mapRoles":"- rolearn: arn:aws:iam::111122223333:role/
doc-test-worker-nodes-NodeInstanceRole-WDO5P42N3ETB\n username: system:node:
{{EC2PrivateDNSName}}\n groups:\n - system:bootstrappers\n -

system:nodes\n"}, "kind":"ConfigMap", "metadata":{"annotations":{}, "name":"aws-
auth", "namespace": "kube-system"}}

117

Amazon EKS User Guide
Managing Users or IAM Roles for your Cluster

creationTimestamp: 2018-04-04T18:49:10%2

name: aws-auth

namespace: kube-system

resourceVersion: "780"

selfLink: /api/vl/namespaces/kube-system/configmaps/aws-auth
uid: dcc31de5-3838-11e8-af26-02e00430057¢

3. Add your IAM users, roles, or AWS accounts to the configMap.

« To add an IAM user: add the user details to the mapUsers section of the ConfigMap, under
data. Add this section if it does not already exist in the file. Each entry supports the following
parameters:

« userarn: The ARN of the IAM user to add.

« username: The user name within Kubernetes to map to the IAM user. By default, the user name
is the ARN of the IAM user.

« groups: A list of groups within Kubernetes to which the user is mapped to. For more
information, see Default Roles and Role Bindings in the Kubernetes documentation.

« To add an IAM role (for example, for federated users): add the role details to the mapRoles
section of the ConfigMap, under data. Add this section if it does not already exist in the file. Each
entry supports the following parameters:

« rolearn: The ARN of the IAM role to add.

« username: The user name within Kubernetes to map to the IAM role. By default, the user name
is the ARN of the IAM role.

« groups: A list of groups within Kubernetes to which the role is mapped. For more information,
see Default Roles and Role Bindings in the Kubernetes documentation.

For example, the block below contains:
« AmapRoles section that adds the worker node instance role so that worker nodes can register
themselves with the cluster.

« AmapUsers section with the AWS users admin from the default AWS account, and ops-user
from another AWS account. Both users are added to the system:masters group.

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will

be
reopened with the relevant failures.
#
apiversion: vi1
data:
mapRoles: |

- rolearn: arn:aws:iam::555555555555:: role/devel-worker-nodes-
NodeInstanceRole-74RF4UBDUKL6
username: system:node:{{EC2PrivateDNSName}}
groups:
- system:bootstrappers
- system:nodes
mapUsers: |
- userarn: arn:aws:iam::555555555555 : user/admin
username: admin
groups:
- system:masters
- userarn: arn:aws:iam::111122223333:user/ops-user
username: ops-user
groups:
- system:masters

118

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

Amazon EKS User Guide
Managing Users or IAM Roles for your Cluster

4. Save the file and exit your text editor.

119

Amazon EKS User Guide
Installing or Upgrading eksctl

The eksctl Command Line Utility

This chapter covers eksctl, a simple command line utility for creating and managing Kubernetes
clusters on Amazon EKS. The eksctl command line utility provides the fastest and easiest way to create
a new cluster with worker nodes for Amazon EKS.

For more information and to see the official documentation, visit https://eksctl.io/.

Installing or Upgrading eksctl

This section helps you to install or upgrade the eksctl command line utility.

Choose the tab below that best represents your client setup.

macOS

To install or upgrade eksctl on macOS using Homebrew

The easiest way to get started with Amazon EKS and macOS is by installing eksctl with Homebrew.
The eksctl Homebrew recipe installs eksctl and any other dependencies that are required for
Amazon EKS, such as kubectl and the aws-iam-authenticator.

1. If you do not already have Homebrew installed on macOS, install it with the following
command.

/usr/bin/ruby -e "$(curl -£fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

2. Install the Weaveworks Homebrew tap.

brew tap weaveworks/tap

3. Install or upgrade eksctl.

« Install eksctl with the following command:

brew install weaveworks/tap/eksctl

If eksctl is already installed, run the following command to upgrade:

brew upgrade eksctl && brew link --overwrite eksctl

4. Test that your installation was successful with the following command.

eksctl version

Note
The GitTag version should be at least 0.1.37. If not, check your terminal output for
any installation or upgrade errors.

120

https://github.com/weaveworks/eksctl
https://brew.sh/

Amazon EKS User Guide
Installing or Upgrading eksctl

Linux

To install or upgrade eksetl on Linux using curl

1. Download and extract the latest release of eksctl with the following command.
curl --silent --location "https://github.com/weaveworks/eksctl/releases/download/
latest_release/eksctl_s$(uname -s)_amdé4.tar.gz" | tar xz -C /tmp
2. Move the extracted binary to /usr/local/bin.
sudo mv /tmp/eksctl /usr/local/bin
3. Test that your installation was successful with the following command.
eksctl version
Note
The citTag version should be at least 0.1.37. If not, check your terminal output for
any installation or upgrade errors.
Windows

To install or upgrade eksctl on Windows using Chocolatey

1.

If you do not already have Chocolatey installed on your Windows system, see Installing
Chocolatey.

Install or upgrade eksctl and the aws-iam-authenticator.

« Install the binaries with the following command:

chocolatey install -y eksctl aws-iam-authenticator

« If they are already installed, run the following command to upgrade:

chocolatey upgrade -y eksctl aws-iam-authenticator

Test that your installation was successful with the following command.

eksctl version

Note
The GitTag version should be at least 0.1.37. If not, check your terminal output for
any installation or upgrade errors.

121

https://chocolatey.org/install
https://chocolatey.org/install

Amazon EKS User Guide
Amazon EKS Default Pod Security Policy

Pod Security Policy

The Kubernetes pod security policy admission controller validates pod creation and update requests
against a set of rules. By default, Amazon EKS clusters ship with a fully permissive security policy with no
restrictions. For more information, see Pod Security Policies in the Kubernetes documentation.

Note

The pod security policy admission controller is only enabled on Amazon EKS clusters running
Kubernetes version 1.13 or later. You must update your cluster's Kubernetes version to at least
1.13 to use pod security policies. For more information, see Updating an Amazon EKS Cluster
Kubernetes Version (p. 26).

Amazon EKS Default Pod Security Policy

Amazon EKS clusters with Kubernetes version 1.13 and higher have a default pod security policy named
eks.privileged. This policy has no restriction on what kind of pod can be accepted into the system,
which is equivalent to running Kubernetes with the PodsecurityPolicy controller disabled.

Note

This policy was created to maintain backwards compatibility with clusters that did not have

the PodsecurityPolicy controller enabled. You can create more restrictive policies for your
cluster and for individual namespaces and service accounts and then delete the default policy to
enable the more restrictive policies.

You can view the default policy with the following command.

kubectl get psp eks.privileged

Output:

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS
VOLUMES

eks.privileged true * RunAsAny RunAsAny RunAsAny RunAsAny false

*

For more details, you can describe the policy with the following command.

kubectl describe psp eks.privileged

Output:

Name: eks.privileged

Settings:
Allow Privileged: true
Allow Privilege Escalation: 0xc0004ce5f8
Default Add Capabilities: <none>
Required Drop Capabilities: <none>
Allowed Capabilities: *
Allowed Volume Types: *
Allow Host Network: true
Allow Host Ports: 0-65535
Allow Host PID: true

122

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Amazon EKS User Guide
Amazon EKS Default Pod Security Policy

Allow Host IPC: true
Read Only Root Filesystem: false
SELinux Context Strategy: RunAsAny

User: <none>

Role: <none>

Type: <none>

Level: <none>
Run As User Strategy: RunAsAny

Ranges: <none>
FSGroup Strategy: RunAsAny

Ranges: <none>
Supplemental Groups Strategy: RunAsAny

Ranges: <none>

The following example shows the full YAML file for the eks.privileged pod security policy, its cluster
role, and cluster role binding.

apivVersion: policy/vlibetal
kind: PodSecurityPolicy
metadata:
name: eks.privileged
annotations:
kubernetes.io/description: 'privileged allows full unrestricted access to
pod features, as if the PodSecurityPolicy controller was not enabled.’'
seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
labels:
kubernetes.io/cluster-service: "true"
eks.amazonaws.com/component: pod-security-policy
spec:
privileged: true
allowPrivilegeEscalation: true
allowedCapabilities:
— otk
volumes:
— vkt

hostNetwork: true

hostPorts:
- min: O
max: 65535

hostIPC: true
hostPID: true
runAsUser:

rule: 'RunAsAny’
seLinux:

rule: 'RunAsAny’
supplementalGroups:

rule: 'RunAsAny’
fsGroup:

rule: 'RunAsAny’
readOnlyRootFilesystem: false

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRole
metadata:
name: eks:podsecuritypolicy:privileged
labels:
kubernetes.io/cluster-service: "true"
eks.amazonaws.com/component: pod-security-policy
rules:
- apiGroups:
- policy
resourceNames:

123

Amazon EKS User Guide
Amazon EKS Default Pod Security Policy

- eks.privileged
resources:

- podsecuritypolicies
verbs:

- use

apivVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRoleBinding
metadata:
name: eks:podsecuritypolicy:authenticated
annotations:
kubernetes.io/description: 'Allow all authenticated users to create privileged pods.'
labels:
kubernetes.io/cluster-service: "true"
eks.amazonaws.com/component: pod-security-policy
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: eks:podsecuritypolicy:privileged
subjects:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: system:authenticated

To delete the default pod security policy

After you create custom pod security policies for your cluster, you can delete the default Amazon EKS
eks.privileged pod security policy to enable your custom policies.

1. Create a file called privileged-podsecuritypolicy.yaml and paste the full eks.privileged
YAML file contents from the preceding example into it (this allows you to delete the pod security
policy, the ClusterRole, and the ClusterRoleBinding associated with it).

2. Delete the YAML with the following command.

kubectl delete -f privileged-podsecuritypolicy.yaml

To restore the default pod security policy

If you have modified or deleted the default Amazon EKS eks.privileged pod security policy, you can
restore it with the following steps.

1. Create a file called privileged-podsecuritypolicy.yaml and paste the full eks.privileged
YAML file contents from the preceeding example into it.

2. Apply the YAML with the following command.

kubectl apply -f privileged-podsecuritypolicy.yaml

124

Amazon EKS User Guide

Launch a Guest Book Application

In this topic, you create a sample guest book application to test your Amazon EKS cluster.

Note
For more information about setting up the guest book example, see https://github.com/
kubernetes/examples/blob/master/guestbook-go/README.md in the Kubernetes

documentation.

To create your guest book application

1.

Create the Redis master replication controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/master/
guestbook-go/redis-master-controller. json

Note

If you receive the error "aws-iam-authenticator": executable file not found
in $PATH, your kubectl isn't configured for Amazon EKS. For more information, see
Installing aws-iam-authenticator (p. 109).

If you receive any other authorization or resource type errors, see Unauthorized or Access
Denied (kubectl) (p. 180) in the troubleshooting section.

Output:

replicationcontroller "redis-master" created

Create the Redis master service.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/master/
guestbook-go/redis-master-service.json

Output:

service "redis-master" created

Create the Redis slave replication controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/master/
guestbook-go/redis-slave-controller.json

Output:

replicationcontroller "redis-slave" created

Create the Redis slave service.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/master/
guestbook-go/redis-slave-service.json

125

https://github.com/kubernetes/examples/blob/master/guestbook-go/README.md
https://github.com/kubernetes/examples/blob/master/guestbook-go/README.md

Amazon EKS User Guide

Output:

service "redis-slave" created

Create the guestbook replication controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/master/
guestbook-go/guestbook-controller. json

Output:

replicationcontroller "guestbook" created

Create the guestbook service.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/master/
guestbook-go/guestbook-service.json

Output:

service "guestbook" created

Query the services in your cluster and wait until the External IP column for the guestbook service
is populated.

Note
It might take several minutes before the IP address is available.

kubectl get services -o wide

After your external IP address is available, point a web browser to that
address at port 3000 to view your guest book. For example, http://
a7a95c2b9e69711e7bla3022fdcfdf2e-1985673473.us-west-2.elb.amazonaws.com:3000

Note
It might take several minutes for DNS to propagate and for your guest book to show up.

126

Amazon EKS User Guide

uestboc

Rick
Morty
Bird Person

Sleepy Gary

(Tophat Jones

Important

If you are unable to connect to the external IP address with your browser, be sure that your
corporate firewall is not blocking non-standards ports, like 3000. You can try switching to a
guest network to verify.

To clean up your guest book application

When you are finished experimenting with your guest book application, you should clean up the
resources that you created for it.

« The following command deletes all of the services and replication controllers for the guest book
application:

kubectl delete rc/redis-master rc/redis-slave rc/guestbook svc/redis-master svc/redis-
slave svc/guestbook

Note

If you receive the error "aws-iam-authenticator": executable file not found
in $PATH, your kubectl isn't configured for Amazon EKS. For more information, see
Installing aws-iam-authenticator (p. 109).

127

Amazon EKS User Guide

If you receive any other authorization or resource type errors, see Unauthorized or Access
Denied (kubectl) (p. 180) in the troubleshooting section.

If you are done with your Amazon EKS cluster, you should delete it and its resources so that you do
not incur additional charges. For more information, see Deleting a Cluster (p. 41).

128

Amazon EKS User Guide

Installing the Kubernetes Metrics
Server

The Kubernetes metrics server is an aggregator of resource usage data in your cluster, and it is not
deployed by default in Amazon EKS clusters. This topic explains how to deploy the Kubernetes metrics
server on your Amazon EKS cluster.

Note
The Kubernetes metrics server must be installed on your cluster to use the Horizontal Pod
Autoscaler.

To install metrics-server from GitHub on an Amazon EKS cluster using curl and jgq

If you have a macOS or Linux system with curl, tar, gzip, and the jgq JSON parser installed, you can
download, extract, and install the latest release with the following commands. Otherwise, use the next
procedure to download the latest version using a web browser.

1.

Open a terminal window and navigate to a directory where you would like to download the latest
metrics-server release.

Copy and paste the commands below into your terminal window and type Enter to execute them.
These commands download the latest release, extract it, and apply the version 1.8+ manifests to
your cluster.

DOWNLOAD_URL=$(curl --silent "https://api.github.com/repos/kubernetes-incubator/
metrics-server/releases/latest”" | jq -r .tarball_url)

DOWNLOAD_VERSION=$(grep -o '[A/v]*$' <<< $DOWNLOAD_URL)

curl -Ls $DOWNLOAD_URL -o metrics-server-$DOWNLOAD_ VERSION.tar.gz

mkdir metrics-server-$DOWNLOAD_ VERSION

tar -xzf metrics-server-$DOWNLOAD_VERSION.tar.gz --directory metrics-server-
$DOWNLOAD_VERSION --strip-components 1

kubectl apply -f metrics-server-$DOWNLOAD_ VERSION/deploy/1.8+/

Verify that the metrics-server deployment is running the desired number of pods with the
following command:

kubectl get deployment metrics-server -n kube-system

Output:
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
metrics-server 1 1 1 1 56m

To install metrics-server from GitHub on an Amazon EKS cluster using a web browser

1.

Download and extract the latest version of the metrics server code from GitHub.

a. Navigate to the latest release page of the metrics-server project on GitHub (https://
github.com/kubernetes-incubator/metrics-server/releases/latest), then choose a source code
archive for the latest release to download it.

b. Navigate to your downloads folder and extract the source code archive. For example, if you
downloaded the . tar.gz archive on a macOS or Linux system, use the following command to
extract (substituting your release version).

129

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-incubator/metrics-server/releases/latest
https://github.com/kubernetes-incubator/metrics-server/releases/latest

Amazon EKS User Guide

tar -xzf metrics-server-0.3.1.tar.gz

Apply all of the YAML manifests in the metrics-server-0.3.1/deploy/1.8+ directory
(substituting your release version).

kubectl apply -f metrics-server-0.3.1/deploy/1.8+/

Verify that the metrics-server deployment is running the desired number of pods with the
following command:

kubectl get deployment metrics-server -n kube-system

Output:
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
metrics-server 1 1 1 1 56m

130

Amazon EKS User Guide
Viewing the Raw Metrics

Control Plane Metrics with
Prometheus

The Kubernetes API server exposes a number of metrics that are useful for monitoring and analysis.
These metrics are exposed internally through a metrics endpoint that refers to the /metrics HTTP API.
Like other endpoints, this endpoint is exposed on the Amazon EKS control plane. This topic explains
some of the ways you can use this endpoint to view and analyze what your cluster is doing.

Viewing the Raw Metrics

To view the raw metrics output, use kubectl with the --raw flag. This command allows you to pass any
HTTP path and returns the raw response.

kubectl get --raw /metrics

Example output:

HELP rest_client_requests_total Number of HTTP requests, partitioned by status code,
method, and host.
TYPE rest_client_requests_total counter

rest_client_requests_total{code="200",host="127.0.0.1:21362" ,method="POST"} 4994
rest_client_requests_total{code="200",host="127.0.0.1:443",method="DELETE"} 1
rest_client_requests_total{code="200",host="127.0.0.1:443",method="GET"} 1.326086e+06
rest_client_requests_total{code="200",host="127.0.0.1:443",method="PUT"} 862173
rest_client_requests_total{code="404",host="127.0.0.1:443",method="GET"} 2
rest_client_requests_total{code="409",host="127.0.0.1:443",method="POST"} 3
rest_client_requests_total{code="409",host="127.0.0.1:443",method="PUT"} 8

HELP ssh_tunnel_open_count Counter of ssh tunnel total open attempts

TYPE ssh_tunnel_open_count counter

ssh_tunnel_open_count 0

HELP ssh_tunnel_open_fail_count Counter of ssh tunnel failed open attempts
TYPE ssh_tunnel_open_fail_count counter

ssh_tunnel_open_fail_ count 0

This raw output returns verbatim what the API server exposes. These metrics are represented in a
Prometheus format. This format allows the API server to expose different metrics broken down by line.
Each line includes a metric name, tags, and a value.

metric_name{"tag"="value"[,...]} value

While this endpoint is useful if you are looking for a specific metric, you typically want to analyze these
metrics over time. To do this, you can deploy Prometheus into your cluster. Prometheus is a monitoring
and time series database that scrapes exposed endpoints and aggregates data, allowing you to filter,
graph, and query the results.

Deploying Prometheus

This topic helps you deploy Prometheus into your cluster with Helm. Helm is a package manager for
Kubernetes clusters. For more information, see Using Helm with Amazon EKS (p. 135).

131

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md
https://prometheus.io/

Amazon EKS User Guide
Deploying Prometheus

After you configure Helm for your Amazon EKS cluster, you can use it to deploy Prometheus with the

following steps.

To deploy Prometheus using Helm

1.

Follow the steps in Using Helm with Amazon EKS (p. 135) to get working helmand tiller

terminal windows, so that you can install Helm charts.

In the Helm terminal window, run the following commands to deploy Prometheus.

a. Create a Prometheus namespace.

kubectl create namespace prometheus

b. Deploy Prometheus.

helm install stable/prometheus \
--name prometheus \

--namespace prometheus \

--set

alertmanager.persistentVolume.storageClass="gp2",server.persistentVolume.storageCla

ss="gp2"

Verify that all of the pods in the prometheus namespace are in the READY state.

kubectl get pods -n prometheus

Output:

NAME READY STATUS RESTARTS AGE
prometheus-alertmanager-848fb754f5-2wpbm 2/2 Running 0 85s
prometheus-kube-state-metrics-86cbcfo9b6f-drnfq 1/1 Running 0 85s
prometheus-node-exporter-8gpcl 1/1 Running 0 85s
prometheus-node-exporter-czz9g 1/1 Running 0 85s
prometheus-node-exporter-ffsl9 1/1 Running 0 85s
prometheus-pushgateway-564f65fcc8-hmzp6 1/1 Running 0 85s
prometheus-server-5b65bd569b-6wgwx 2/2 Running 0 85s

Use kubectl to port forward the Prometheus console to your local machine.

kubectl --namespace=prometheus port-forward deploy/prometheus-server 9090

Point a web browser to localhost:9090 to view the Prometheus console.

Choose a metric from the - insert metric at cursor menu, then choose Execute. Choose the Graph
tab to show the metric over time. The following image shows container_memory_usage_bytes

over time.

132

localhost:9090

Amazon EKS User Guide
Deploying Prometheus

container_memory_usage_bytes

m container_memory_usage¢ *

Graph Console

= | 1h [Z] e # Until

2G4

1.5G 4

1G 1

500M 4

Amazon EKS User Guide
Deploying Prometheus

7. From the top navigation bar, choose Status, then Targets.

Prometheus

Runtime & Build Informat

O Enable query history ‘
Command-Line Flags

Expression (press Shift+Enter for Configuration

. . Rules
Execute - Insert metric at curs

Graph Console Service Discovery
H Moment "

Element

no data

All of the Kubernetes endpoints that are connected to Prometheus using service discovery are
displayed.

134

Amazon EKS User Guide

Using Helm with Amazon EKS

The helm package manager for Kubernetes helps you install and manage applications on your
Kubernetes cluster. For more information, see the Helm documentation. This topic helps you install and
run the helmand tiller binaries locally so that you can install and manage charts using the helm CLI
on your local system.

Although you can run the server-side tiller component in your cluster (and many public Helm
installation articles offer only this option), running tiller locally in its own namespace as described in
this topic reduces the risk of exploit for your cluster in the following ways:

o When you run the tiller server on your cluster, it gets its own Kubernetes Identity and associated
permission set, often with full Kubernetes administrator permissions. This opens up the possibility for
a privilege escalation, where an unprivileged Kubernetes user who has network access to the tiller
server can gain additional Kubernetes permissions by way of installing a chart.

« When you run the tiller server on your local machine, users don't inherit the tiller server
permissions on the cluster (likely full-admin), but instead tiller inherits the Kubernetes permissions
of the end-user.

« Running tiller in its own namespace allows you to control access to the Kubernetes secrets that the
tiller server stores by controlling access to that namespace.

Important

Before you can install Helm charts on your Amazon EKS cluster, you must configure
kubectl to work for Amazon EKS. If you have not already done this, see Installing aws-
iam-authenticator (p. 109) and Create a kubeconfig for Amazon EKS (p. 112) before
proceeding. If the following command succeeds for your cluster, you're properly configured.

kubectl get sve

To install the helm and tiller binaries on your local system

1. « If you're using macOS with Homebrew, install the binaries with the following command.

brew install kubernetes-helm

« If you're using Windows with Chocolatey, install the binaries with the following command.

choco install kubernetes-helm

« Otherwise, see Installing the Helm Client in the Helm documentation.

Important

Don't proceed to install the tiller server-side component with the Helm
documentation (stop before you reach Installing Tiller). This topic explains how to run
tiller locally in its own namespace, which reduces the risk of exploit for your cluster.

2. To pick up the new binaries in your PATH, Close your current terminal window and open a new one.

To run helm and tiller locally

1. Create a namespace called tiller with the following command.

135

https://docs.helm.sh/
https://brew.sh/
https://chocolatey.org/
https://docs.helm.sh/using_helm/#installing-the-helm-client
https://docs.helm.sh/using_helm/#installing-tiller

Amazon EKS User Guide

kubectl create namespace tiller

Note

By default, tiller stores its secrets in the kube-system namespace. Creating a
namespace for tiller and specifying that namespace when you run it gives you more
specific access controls to who is authorized to view the Helm chart secrets that tiller
stores in your cluster.

2. Open a new terminal window for the tiller server. For the following steps, you need a terminal
window for the tiller server and another window for the helm client.

Important

You should ensure that you are the only active user for the system that you use for the
tiller server (such as a local laptop or desktop where you are the only user that is logged
in). Otherwise, any user on your system could make requests to the tiller server with
your Kubernetes permissions. For Linux and macOS systems, you can see the current users
with the following command:

users

Output:

ericn

In the above example, there is only a single user named ericn on the system, so it is safe
to proceed. If there are more than one user logged in to your system, you should use a
different system, or consider launching an Amazon EC2 instance for this procedure so that
you can ensure that you are the only active user.

3. Inthe tiller server terminal, set the TILLER_NAMESPACE environment variable to tiller and
then start the tiller server.

a. Setthe TILLER NAMESPACE environment variable to tiller.

« macOS and Linux:

export TILLER_NAMESPACE=tiller

Windows (PowerShell):

$env:TILLER_NAMESPACE = 'tiller'

b. Startthe tiller server.

« macOS and Linux:

tiller -listen=localhost:44134 -storage=secret -logtostderr

Windows (PowerShell):

tiller -listen=localhost:44134 -storage=secret

Note
By default, tiller stores release information in ConfigMaps; however, the latest Helm
documentation recommends that you use the -storage=secret flag to store this

136

Amazon EKS User Guide

information with Kubernetes secrets instead. For more information, see Tiller's Release
Information in Securing your Helm Installation. The -1isten=1localhost:44134 flag
ensures that the tiller server only accepts requests from your local machine (this
prevents unauthorized network users from accessing your local tiller process).

In the helm client terminal window, set the HELM_HOST environment variable to :44134.

« macOS and Linux:

export HELM HOST=:44134

Windows (PowerShell):

$env:HELM_HOST = ':44134"

In the helm client terminal window, initialize the helm client.

helm init --client-only

In the helm client terminal window, verify that helmis communicating with the tiller server
properly.

helm repo update

Output:

Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository

...Successfully got an update from the "stable" chart repository
Update Complete. # Happy Helming!#

At this point, you can run any helm commands in your helm client terminal window (such as helm
install chart_name) to install, modify, delete, or query Helm charts in your cluster. As you

run helm commands, you can follow the tiller logs for those commands in its server terminal
window. For more information, see Helm Commands and Charts in the Helm documentation.

If you're just experimenting with helm and you don't have a specific chart to install, you can see
Install an Example Chart in the Helm Quickstart Guide.

When you're finished, close your helm client and tiller server terminal windows. Repeat this
procedure when you want to use helm with your cluster.

137

https://github.com/helm/helm/blob/master/docs/securing_installation.md#tillers-release-information
https://github.com/helm/helm/blob/master/docs/securing_installation.md#tillers-release-information
https://github.com/helm/helm/blob/master/docs/securing_installation.md
https://docs.helm.sh/helm/
https://docs.helm.sh/developing_charts/#charts
https://docs.helm.sh/using_helm/#install-an-example-chart
https://docs.helm.sh/using_helm/

Amazon EKS User Guide

Tutorial: Deploy the Kubernetes Web
Ul (Dashboard)

This tutorial guides you through deploying the Kubernetes dashboard to your Amazon EKS cluster,
complete with CPU and memory metrics. It also helps you to create an Amazon EKS administrator service
account that you can use to securely connect to the dashboard to view and control your cluster.

Important

Kubernetes versions 1.11 and above do not support heapster memory and CPU metrics in the
dashboard by default. The community is working to replace heapster in the dashboard with
the Kubernetes metrics server to fix this issue. For more information, see https://github.com/
kubernetes/dashboard/issues/3147 and https://github.com/kubernetes/dashboard/issues/
2986.

When the dashboard project is updated to use the Kubernetes metrics server, this topic will be
updated with information about how to restore the CPU and memory metrics functionality.
Until that time, CPU and memory metrics are not visible in the dashboard on Amazon EKS
cluster versions 1.11 and above.

There is a potential workaround posted on GitHub, but the Amazon EKS team has not evaluated
the risk of setting the insecure=true flag on the heapster source, so we cannot recommend
the workaround at this time.

138

https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard/issues/3147
https://github.com/kubernetes/dashboard/issues/3147
https://github.com/kubernetes/dashboard/issues/2986
https://github.com/kubernetes/dashboard/issues/2986
https://github.com/awslabs/amazon-eks-ami/issues/128#issuecomment-450620004

Amazon EKS User Guide
Prerequisites

kubernetes Q, Search

= QOverview

Cluster
CPU usage
Mamespaces
Nodes 0.045
0.040
Persistent Volumes —
g 0.030
Roles < o020
2
Storage Classes L0010
1?}:42 10:46 10:50
Mamespace Time
kube-system -
Workloads
Overview
Workloads Workloads Statuses
Cron Jobs
Daemon Sets
Deployments
Jobs
Pods
Daemon Sets Depl
Replica Sets
Prerequisites

This tutorial assumes the following:

139

Amazon EKS User Guide
Step 1: Deploy the Dashboard

« You have created an Amazon EKS cluster by following the steps in Getting Started with Amazon
EKS (p. 3).

« The security groups for your control plane elastic network interfaces and worker nodes follow the
recommended settings in Cluster Security Group Considerations (p. 84).

» You are using a kubectl client that is configured to communicate with your Amazon EKS cluster (p. 13).

Step 1: Deploy the Dashboard

Use the following steps to deploy the Kubernetes dashboard, heapster, and the inf1luxdb backend for
CPU and memory metrics to your cluster.

To deploy the Kubernetes dashboard

1. Deploy the Kubernetes dashboard to your cluster:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v1.10.1/src/
deploy/recommended/kubernetes-dashboard.yaml

Output:

secret "kubernetes-dashboard-certs" created
serviceaccount "kubernetes-dashboard" created

role "kubernetes-dashboard-minimal" created
rolebinding "kubernetes-dashboard-minimal" created
deployment "kubernetes-dashboard" created

service "kubernetes-dashboard" created

2. Deploy heapster to enable container cluster monitoring and performance analysis on your cluster:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/
kube-config/influxdb/heapster.yaml

Note

Although heapster is deprecated, it is currently the only supported metrics provider for
the Kubernetes dashboard. For more information, see https://github.com/kubernetes/
dashboard/issues/2986.

Output:

serviceaccount "heapster" created
deployment "heapster" created
service "heapster" created

3. Deploy the influxdb backend for heapster to your cluster:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/
kube-config/influxdb/influxdb.yaml

Output:

deployment "monitoring-influxdb" created
service "monitoring-influxdb" created

4. Create the heapster cluster role binding for the dashboard:

140

https://github.com/kubernetes/dashboard/issues/2986
https://github.com/kubernetes/dashboard/issues/2986

Amazon EKS User Guide
Step 2: Create an eks-admin Service
Account and Cluster Role Binding

kubectl apply -f https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/
kube-config/rbac/heapster-rbac.yaml

Output:

clusterrolebinding "heapster" created

Step 2: Create an eks-admin Service Account and
Cluster Role Binding

By default, the Kubernetes dashboard user has limited permissions. In this section, you create an eks-
admin service account and cluster role binding that you can use to securely connect to the dashboard
with admin-level permissions. For more information, see Managing Service Accounts in the Kubernetes
documentation.

To create the eks-admin service account and cluster role binding

Important

The example service account created with this procedure has full cluster-admin (superuser)
privileges on the cluster. For more information, see Using RBAC Authorization in the Kubernetes
documentation.

1. Create a file called eks-admin-service-account.yaml with the text below. This manifest
defines a service account and cluster role binding called eks-admin.

apiversion: vl
kind: ServiceAccount
metadata:
name: eks-admin
namespace: kube-system
apivVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRoleBinding
metadata:
name: eks-admin
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: eks-admin
namespace: kube-system

2. Apply the service account and cluster role binding to your cluster:

kubectl apply -f eks-admin-service-account.yaml

Output:

serviceaccount "eks-admin" created
clusterrolebinding.rbac.authorization.k8s.io "eks-admin" created

141

https://kubernetes.io/docs/admin/service-accounts-admin/
https://kubernetes.io/docs/admin/authorization/rbac/

Amazon EKS User Guide
Step 3: Connect to the Dashboard

Step 3: Connect to the Dashboard

Now that the Kubernetes dashboard is deployed to your cluster, and you have an administrator service
account that you can use to view and control your cluster, you can connect to the dashboard with that
service account.

To connect to the Kubernetes dashboard

1.

Retrieve an authentication token for the eks-admin service account. Copy the
<authentication_token> value from the output. You use this token to connect to the dashboard.

kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep eks-
admin | awk '{print $1}')

Output:

Name: eks-admin-token-b5zv4
Namespace: kube-system

Labels: <none>

Annotations: kubernetes.io/service-account.name=eks-admin
kubernetes.io/service-account.uid=bcfe66ac-39be-11e8-97e8-026dce96bé6e8

Type: kubernetes.io/service-account-token

Data

ca.crt: 1025 bytes

namespace: 11 bytes

token: <authentication_token>

Start the kubectl proxy.

kubectl proxy

Open the following link with a web browser to access the dashboard endpoint: http://
localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/
login

Choose Token, paste the <authentication_token> output from the previous command into the
Token field, and choose SIGN IN.

142

http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login

Amazon EKS User Guide
Step 4: Next Steps

Kubernetes Dashboard

O Kubeconfig

Flease select the kubeconfig file that you have created to configure access to the
cluster. To find out more about how to configure and use kubeconfig file, please refer
1o the Configure Access to Multiple Clusters section.

(® Token

Every Service Account has a Secret with valid Bearer Token that can be used to log in
10 Dashboard. To find out more about how to configure and use Bearer Tokens,
please refer to the Authentication section.

Enter token

EL R AR R LRl R RS R LR R LR LRl

Note
It may take a few minutes before CPU and memory metrics appear in the dashboard.

Step 4: Next Steps

After you have connected to your Kubernetes cluster dashboard, you can view and control your cluster
using your eks—-admin service account. For more information about using the dashboard, see the project
documentation on GitHub.

143

https://github.com/kubernetes/dashboard
https://github.com/kubernetes/dashboard

Amazon EKS User Guide
Prerequisites

Getting Started with AWS App Mesh
and Kubernetes

AWS App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control
microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end
visibility and helping to ensure high availability for your applications.

App Mesh gives you consistent visibility and network traffic controls for every microservice in an
application. For more information, see the App Mesh User Guide.

This topic helps you to use AWS App Mesh with an existing microservice application running on Amazon
EKS or Kubernetes on Amazon EC2. You can either integrate Kubernetes with App Mesh resources by
completing the steps in this topic, or by installing the App Mesh Kubernetes integration components.
The integration components automatically complete the tasks in this topic for you, enabling you to
integrate with App Mesh directly from Kubernetes. For more information, see Configure App Mesh
Integration with Kubernetes.

Prerequisites

Step

Step

App Mesh supports microservice applications that use service discovery naming for their components.
To use this getting started guide, you must have a microservice application running on Amazon EKS or
Kubernetes on AWS.

Kubernetes kube-dns and coredns are supported. For more information, see DNS for Services and
Pods in the Kubernetes documentation.

1: Create Your Service Mesh

A service mesh is a logical boundary for network traffic between the services that reside within it. For
more information, see Service Meshes in the AWS App Mesh User Guide.

After you create your service mesh, you can create virtual services, virtual nodes, virtual routers, and
routes to distribute traffic between the applications in your mesh.

To create a new service mesh with the AWS Management Console

Open the App Mesh console at https://console.aws.amazon.com/appmesh/.
Choose Create mesh.

For Mesh name, specify a name for your service mesh.

Choose Create mesh to finish.

PwnN =

2: Create Your Virtual Nodes

A virtual node acts as a logical pointer to a particular task group, such as a Kubernetes deployment. For
more information, see Virtual Nodes in the AWS App Mesh User Guide.

144

https://www.envoyproxy.io/
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/mesh-k8s-integration.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/mesh-k8s-integration.html
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://docs.aws.amazon.com//app-mesh/latest/userguide/meshes.html
https://console.aws.amazon.com/appmesh/
https://docs.aws.amazon.com//app-mesh/latest/userguide/virtual_nodes.html

Amazon EKS User Guide
Step 3: Create Your Virtual Routers

When you create a virtual node, you must specify the DNS service discovery hostname for your task
group. Any inbound traffic that your virtual node expects should be specified as a listener. Any outbound
traffic that your virtual node expects to reach should be specified as a backend.

You must create virtual nodes for each microservice in your application.

To create a virtual node in the AWS Management Console.

A WwDN =

Choose the mesh that you created in the previous steps.
Choose Virtual nodes in the left navigation.

Choose Create virtual node.

For Virtual node name, choose a name for your virtual node.

For Service discovery method, choose DNS for services that use DNS service discovery and then
specify the hostname for DNS hostname. Otherwise, choose None if your virtual node doesn't
expect any ingress traffic.

To specify any backends (for egress traffic) for your virtual node, or to configure inbound and
outbound access logging information, choose Additional configuration.

a. To specify a backend, choose Add backend and enter a virtual service name or full Amazon
Resource Name (ARN) for the virtual service that your virtual node communicates with. Repeat
this step until all of your virtual node backends are accounted for.

b. To configure logging, enter the HTTP access logs path that you want Envoy to use. We
recommend the /dev/stdout path so that you can use Docker log drivers to export your Envoy
logs to a service such as Amazon CloudWatch Logs.

Note
Logs must still be ingested by an agent in your application and sent to a destination.
This file path only instructs Envoy where to send the logs.

If your virtual node expects ingress traffic, specify a Port and Protocol for that Listener.

If you want to configure health checks for your listener, ensure that Health check enabled is
selected and then complete the following substeps. If not, clear this check box.

a. For Health check protocol, choose to use an HTTP or TCP health check.
For Health check port, specify the port that the health check should run on.

For Healthy threshold, specify the number of consecutive successful health checks that must
occur before declaring the listener healthy.

d. For Health check interval, specify the time period in milliseconds between each health check
execution.

e. For Path, specify the destination path for the health check request. This is required only if the
specified protocol is HTTP. If the protocol is TCP, this parameter is ignored.

f. For Timeout period, specify the amount of time to wait when receiving a response from the
health check, in milliseconds.

g. For Unhealthy threshold, specify the number of consecutive failed health checks that must
occur before declaring the listener unhealthy.

Chose Create virtual node to finish.

. Repeat this procedure as necessary to create virtual nodes for each remaining microservice in your

application.

Virtual routers handle traffic for one or more virtual services within your mesh. After you create a virtual
router, you can create and associate routes for your virtual router that direct incoming requests to
different virtual nodes. For more information, see Virtual Routers in the AWS App Mesh User Guide.

145

https://docs.aws.amazon.com//app-mesh/latest/userguide/virtual_routers.html

Amazon EKS User Guide
Step 4: Create Your Routes

Step

Step

Create virtual routers for each microservice in your application.
Creating a virtual router in the AWS Management Console.

Choose Virtual routers in the left navigation.
2. Choose Create virtual router.

3. For Virtual router name, specify a name for your virtual router. Up to 255 letters, numbers,
hyphens, and underscores are allowed.

4. For Listener, specify a Port and Protocol for your virtual router.
5. Choose Create virtual router to finish.

6. Repeat this procedure as necessary to create virtual routers for each remaining microservice in your
application.

4: Create Your Routes

A route is associated with a virtual router, and it's used to match requests for a virtual router and
distribute traffic accordingly to its associated virtual nodes. For more information, see Routes in the AWS
App Mesh User Guide.

Create routes for each microservice in your application.
Creating a route in the AWS Management Console.

Choose Virtual routers in the left navigation.

Choose the router that you want to associate a new route with.

In the Routes table, choose Create route.

For Route name, specify the name to use for your route.

For Route type, choose the protocol for your route.

For Virtual node name, choose the virtual node that this route will serve traffic to.

For Weight, choose a relative weight for the route. The total weight for all routes must be less than
100.

8. To use HTTP path-based routing, choose Additional configuration and then specify the path that
the route should match. For example, if your virtual service name is my-service.local and
you want the route to match requests to my-service.local/metrics, your prefix should be /
metrics.

Nouhrwbn=

9. Choose Create route to finish.

10. Repeat this procedure as necessary to create routes for each remaining microservice in your
application.

5: Create Your Virtual Services

A virtual service is an abstraction of a real service that is provided by a virtual node directly or indirectly
by means of a virtual router. Dependent services call your virtual service by its virtualServiceName,
and those requests are routed to the virtual node or virtual router that is specified as the provider for the
virtual service. For more information, see Virtual Services in the AWS App Mesh User Guide.

Create virtual services for each microservice in your application.
Creating a virtual service in the AWS Management Console.

1. Choose Virtual services in the left navigation.

146

https://docs.aws.amazon.com//app-mesh/latest/userguide/routes.html
https://docs.aws.amazon.com//app-mesh/latest/userguide/virtual_services.html

Amazon EKS User Guide
Step 6: Updating Your Microservice Pod Specifications

2. Choose Create virtual service.

3. For Virtual service name, choose a name for your virtual service. We recommend that
you use the service discovery name of the real service that you're targeting (such as my-
service.default.svc.cluster.local).

4. For Provider, choose the provider type for your virtual service:

« If you want the virtual service to spread traffic across multiple virtual nodes, select Virtual router
and then choose the virtual router to use from the drop-down menu.

« If you want the virtual service to reach a virtual node directly, without a virtual router, select
Virtual node and then choose the virtual node to use from the drop-down menu.

« If you don't want the virtual service to route traffic at this time (for example, if your virtual nodes
or virtual router doesn't exist yet), choose None. You can update the provider for this virtual
service later.

5. Choose Create virtual service to finish.

6. Repeat this procedure as necessary to create virtual services for each remaining microservice in your
application.

Step 6: Updating Your Microservice Pod
Specifications

App Mesh is a service mesh based on the Envoy proxy. After you create your service mesh, virtual
services, virtual nodes, virtual routers, and routes, you must update your microservices to be compatible
with App Mesh.

App Mesh vends the following custom container images that you must add to your Kubernetes pod
specifications:

« App Mesh Envoy containerimage —111345817488.dkr.ecr.us-west-2.amazonaws .com/aws—
appmesh-envoy:v1l.11.1.0-prod. Envoy uses the configuration defined in the App Mesh control
plane to determine where to send your application traffic.

You must use the App Mesh Envoy container image until the Envoy project team merges changes that
support App Mesh. For additional details, see the GitHub roadmap issue.

« App Mesh proxy route manager —111345817488.dkr.ecr.us-west-2.amazonaws.com/aws—
appmesh-proxy-route-manager :v2. The route manager sets up a pod’'s network namespace with
iptables rules that route ingress and egress traffic through Envoy.

The following text is an example Kubernetes pod specification that you can merge with your existing
application. Substitute your mesh name and virtual node name for the APPMESH_VIRTUAL_ NODE_NAME
value, and a list of ports that your application listens on for the APPMESH_APP_PORTS value. Substitute
the Amazon EC2 instance AWS Region for the AWS_REGION value.

Update each microservice pod specification in your application to include these containers, and then
deploy the new specifications to update your microservices and start using App Mesh with your
Kubernetes application.

Example Kubernetes pod spec

spec:
containers:
- name: envoy
image: 111345817488.dkr.ecr.us-west-2.amazonaws.com/aws-appmesh-envoy:v1l.11.1.0-prod
securityContext:

147

https://www.envoyproxy.io/
https://github.com/aws/aws-app-mesh-roadmap/issues/10

Amazon EKS User Guide
Step 6: Updating Your Microservice Pod Specifications

runAsUser: 1337
env:
- name: "APPMESH_VIRTUAL_NODE_NAME"
value: "mesh/meshName/virtualNode/virtualNodeName"
- name: "ENVOY_LOG_LEVEL"
value: "info"
- name: "AWS_REGION"
value: "aws_region_name"
initContainers:
- name: proxyinit
image: 111345817488.dkr.ecr.us-west-2.amazonaws.com/aws-appmesh-proxy-route-
manager:v2
securityContext:
capabilities:
add:
- NET_ADMIN
env:
- name: "APPMESH_START_ENABLED"
value: "1"
- name: "APPMESH_IGNORE_UID"
value: "1337"
- name: "APPMESH_ENVOY_INGRESS_PORT"
value: "15000"
- name: "APPMESH_ENVOY_EGRESS_PORT"
value: "15001"
- name: "APPMESH_APP_PORTS"
value: "application_port_list"
- name: "APPMESH_EGRESS_IGNORED_IP"
value: "169.254.169.254"

148

Amazon EKS User Guide
Prerequisites

Tutorial: Configure App Mesh
Integration with Kubernetes

AWS App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control
microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end
visibility and helping to ensure high availability for your applications.

App Mesh gives you consistent visibility and network traffic controls for every microservice in an
application. For more information, see the App Mesh User Guide.

When you use AWS App Mesh with Kubernetes, you manage App Mesh resources, such as virtual services
and virtual nodes, that align to Kubernetes resources, such as services and deployments. You also

add the App Mesh sidecar container images to Kubernetes pod specifications. This tutorial guides you
through the installation of the following open source components that automatically complete these
tasks for you when you work with Kubernetes resources:

« App Mesh controller for Kubernetes — The controller is accompanied by the deployment of three
Kubernetes custom resource definitions: mesh, virtual service, and virtual node. The
controller watches for creation, modification, and deletion of the custom resources and makes
changes to the corresponding App Mesh mesh, virtual service (including virtual router and
route), and virtual node resources through the App Mesh API. To learn more or contribute to the
controller, see the GitHub project.

« App Mesh sidecar injector for Kubernetes — The injector installs as a webhook and injects the App
Mesh sidecar container images into Kubernetes pods running in specific, labeled namespaces. To learn
more or contribute, see the GitHub project.

The features discussed in this topic are available as an open-source beta. This means that these
features are well tested. Support for the features will not be dropped, though details may change. If
the schema or schematics of a feature changes, instructions for migrating to the next version will be
provided. This migration may require deleting, editing, and re-creating Kubernetes API objects.

Prerequisites

To use the controller and sidecar injector, you must have the following resources:

« An existing Kubernetes cluster running version 1.11 or later. If you don't have an existing cluster, you
can deploy one using the Getting Started with Amazon EKS guide.

« A kubectl client that is configured to communicate with your Kubernetes cluster. If you're using
Amazon Elastic Kubernetes Service, you can use the instructions for installing kubect1 and
configuring a kubeconfig file.

+ jgand Open SSL installed.

Step 1: Install the Controller and Custom
Resources

To install the controller and Kubernetes custom resource definitions, complete the following steps.

149

https://www.envoyproxy.io/
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/meshes.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/virtual_services.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/virtual_routers.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/routes.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/virtual_nodes.html
https://github.com/aws/aws-app-mesh-controller-for-k8s
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html#mesh-gs-k8s-update-microservices
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html#mesh-gs-k8s-update-microservices
https://github.com/aws/aws-app-mesh-inject
https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://stedolan.github.io/jq/download/

Amazon EKS User Guide
Step 2: Install the Sidecar Injector

The controller requires that your account and your Kubernetes worker nodes are able to work with
App Mesh resources. Attach the AWSAppMeshFullAccess policy to the role that is attached to your
Kubernetes worker nodes. If you are using a pod identity solution, make sure that the controller pod
is bound to the policy.

To create the Kubernetes custom resources and launch the controller, download the following yaml
file and apply it to your cluster with the following command.

curl https://raw.githubusercontent.com/aws/aws-app-mesh-controller-for-k8s/v0.1.1/
deploy/all.yaml | kubectl apply -f -

A Kubernetes namespace named appmesh-system is created and a container running the controller
is deployed into the namespace.

Confirm that the controller is running with the following command.

kubectl rollout status deployment app-mesh-controller -n appmesh-system

If the controller is running, the following output is returned.

deployment "app-mesh-controller" successfully rolled out

Confirm that the Kubernetes custom resources for App Mesh were created with the following
command.

kubectl get crd

If the custom resources were created, output similar to the following is returned.

NAME CREATED AT

meshes.appmesh.k8s.aws 2019-05-08T14:17:26%Z
virtualnodes.appmesh.k8s.aws 2019-05-08T14:17:26%Z
virtualservices.appmesh.k8s.aws 2019-05-08T14:17:26Z

Step 2: Install the Sidecar Injector

To install the sidecar injector, complete the following steps. If you'd like to see the controller and injector
in action, complete the steps in this section, but replace my-mesh in the first step with color-mesh,
and then see the section called “Deploy a Mesh Connected Service” (p. 153).

1.

Export the name of the mesh you want to create with the following command.

export MESH NAME=my-mesh

Download and execute the sidecar injector installation script with the following command.

curl https://raw.githubusercontent.com/aws/aws-app-mesh-inject/v0.1.4/scripts/
install.sh | bash

A Kubernetes namespace named appmesh-inject was created and a container running the injector
was deployed into the namespace. If the injector successfully installed, the last several lines of the
output returned are similar to the following text.

deployment.apps/aws-app-mesh-inject configured

150

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn:aws:iam::aws:policy/AWSAppMeshFullAccess$jsonEditor

Amazon EKS User Guide
Step 3: Configure App Mesh

mutatingwebhookconfiguration.admissionregistration.k8s.io/aws-app-mesh-inject
configured

waiting for aws-app-mesh-inject to start

deployment "aws-app-mesh-inject" successfully rolled out

Mesh name has been set up

App Mesh image has been set up

The injector is ready

Step 3: Configure App Mesh

When you deploy an application in Kubernetes, you also create the Kubernetes custom resources so that
the controller can create the corresponding App Mesh resources. Additionally, you must enable sidecar
injection so that the App Mesh sidecar container images are deployed in each Kubernetes pod.

Create Kubernetes Custom Resources

You can deploy mesh, virtual service, and virtual node custom resources in Kubernetes, which then
triggers the controller to create the corresponding resources in App Mesh through the App Mesh API.

Create a Mesh

When you create a mesh custom resource, you trigger the creation of an App Mesh mesh. The mesh
name that you specify must be the same as the mesh name you exported when you installed the sidecar
injector (p. 150). If the mesh name that you specify already exists, a new mesh is not created.

apivVersion: appmesh.k8s.aws/vlibetal
kind: Mesh
metadata:

name: my-mesh

Create a Virtual Service

When you create a virtual service custom resource, you trigger the creation of an App Mesh virtual
service, virtual router, and one or more routes containing a route configuration. The virtual service allows
requests from one application in the mesh to be routed to a number of virtual nodes that make up a
service.

apivVersion: appmesh.k8s.aws/vlbetal
kind: VirtualService
metadata:

name: my-svc-a

namespace: my-namespace

spec:
meshName: my-mesh
routes:
- name: route-to-svc-a
http:
match:
prefix: /
action:
weightedTargets:
- virtualNodeName: my-app-a
weight: 1

151

https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html#mesh-gs-k8s-update-microservices

Amazon EKS User Guide
Sidecar Injection

Create a Virtual Node

When you create a virtual node custom resource, you trigger the creation of an App Mesh virtual node.
The virtual node contains listener, back-end, and service discovery configuration.

apivVersion: appmesh.k8s.aws/vlbetal
kind: VirtualNode
metadata:
name: my-app-a
namespace: my-namespace
spec:
meshName: my-mesh
listeners:
- portMapping:
port: 9000
protocol: http
serviceDiscovery:
dns:
hostName: my-app-a.my-namespace.svc.cluster. local
backends:
- virtualService:
virtualServiceName: my-svc-a

Sidecar Injection

You enable sidecar injection for a Kubernetes namespace. When necessary, you can override the injector's
default behavior for each pod you deploy in a Kubernetes namespace that you've enabled the injector
for.

Enable Sidecar Injection for a Namespace

To enable the sidecar injector for a Kubernetes namespace, label the namespace with the following
command.

kubectl label namespace my-namespace appmesh.k8s.aws/sidecarInjectorWebhook=enabled

The App Mesh sidecar container images will be automatically injected into each pod that you deploy into
the namespace.

Override Sidecar Injector Default Behavior

To override the default behavior of the injector when deploying a pod in a namespace that you've
enabled the injector for, add any of the following annotations to your pod spec.

o appmesh.k8s.aws/mesh: mesh-name — Add when you want to use a different mesh name than the one
that you specified when you installed the injector.

« appmesh.k8s.aws/ports: "ports" — Specify particular ports when you don't want all of the container
ports defined in a pod spec passed to the sidecars as application ports.

« appmesh.k8s.aws/egressignoredPorts: ports — Specify a comma separated list of port numbers for
outbound traffic that you want ignored. By default all outbound traffic ports will be routed, except
port 22 (SSH).

« appmesh.k8s.aws/virtualNode: virtual-node-name — Specify your own name if you don't want the
virtual node name passed to the sidecars to be <deployment name>--<namespace>.

« appmesh.k8s.aws/sidecarlnjectorWebhook: disabled — Add when you don't want the injector enabled for
a pod.

152

https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html#mesh-gs-k8s-update-microservices

Amazon EKS User Guide
Step 4: Remove Integration Components (Optional)

apivVersion: appmesh.k8s.aws/vlibetal

kind: Deployment

spec:

metadata:
annotations:

appmesh.k8s.aws/mesh: my-mesh2
appmesh.k8s.aws/ports: "8079,8080"
appmesh.k8s.aws/egressIgnoredPorts: "3306"
appmesh.k8s.aws/virtualNode: my-app
appmesh.k8s.aws/sidecarInjectorWebhook: disabled

Step 4: Remove Integration Components
(Optional)

If you need to remove the Kubernetes integration components, run the following commands.

kubectl delete crd meshes.appmesh.k8s.aws

kubectl delete crd virtualnodes.appmesh.k8s.aws
kubectl delete crd virtualservices.appmesh.k8s.aws
kubectl delete namespace appmesh-system

kubectl delete namespace appmesh-inject

Deploy a Mesh Connected Service

In this topic, you deploy a sample application on Kubernetes. The application deploys mesh, virtual
service, and virtual node Kubernetes custom resources. Kubernetes automatically creates mesh, virtual
service, and virtual node resources in App Mesh and injects the App Mesh sidecar images into Kubernetes
pods.

Prerequisites

Before you deploy the sample application, you must meet the following prerequisites:

« Meet all of the prerequisites in Tutorial: Configure App Mesh Integration with Kubernetes (p. 149).

» Have the App Mesh controller for Kubernetes and the App Mesh sidecar injector for Kubernetes
installed and configured. When you install the sidecar injector, specify color-mesh as the name of your
mesh. To learn more about the controller and sidecar injector and how to install and configure them,
see Tutorial: Configure App Mesh Integration with Kubernetes (p. 149).

Deploy a Sample Application

The sample application consists of two components:

« ColorGateway — A simple http service written in Go that is exposed to external clients and that
responds to http://service-name:port/color. The gateway responds with a color retrieved from color-
teller and a histogram of colors observed at the server that responded up to the point when you made
the request.

« ColorTeller — A simple http service written in Go that is configured to return a color. Multiple variants
of the service are deployed. Each service is configured to return a specific color.

153

Amazon EKS User Guide
Deploy a Sample Application

To deploy the color mesh sample application, download the following file and apply it to your
Kubernetes cluster with the following command.

curl https://raw.githubusercontent.com/aws/aws-app-mesh-controller-for-k8s/v0.1.0/
examples/color.yaml | kubectl apply -f -

View the resources deployed by the sample application with the following command.

kubectl -n appmesh-demo get all

In the output, you see a collection of virtual services, virtual nodes, and mesh custom resources
along with native Kubernetes deployments, pods, and services. Your output will be similar to the
following output.

NAME READY STATUS RESTARTS AGE
pod/colorgateway-cc6464d75-4ktj4 2/2 Running 0 37s
pod/colorteller-86664b5956-6h26c 2/2 Running 0 36s
pod/colorteller-black-6787756c7b-dw82f 2/2 Running 0 36s
pod/colorteller-blue-55d6£99dc6-£f5wgd 2/2 Running 0 36s
pod/colorteller-red-578866ffb-x9m7w 2/2 Running 0 35s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/colorgateway ClusterIP 10.100.21.147 <none> 9080/TCP 37s
service/colorteller ClusterIP 10.100.187.50 <none> 9080/TCP 37s
service/colorteller-black ClusterIP 10.100.61.36 <none> 9080/TCP 36s
service/colorteller-blue ClusterIP 10.100.254.230 <none> 9080/TCP 36s
service/colorteller-red ClusterIP 10.100.90.38 <none> 9080/TCP 36s
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/colorgateway 1 1 1 1 37s
deployment.apps/colorteller 1 1 1 1 36s
deployment.apps/colorteller-black 1 1 1 1 36s
deployment.apps/colorteller-blue 1 1 1 1 36s
deployment.apps/colorteller-red 1 1 1 1 36s
NAME DESIRED CURRENT READY AGE
replicaset.apps/colorgateway-cc6464d75 1 1 1 37s
replicaset.apps/colorteller-86664b5956 1 1 1 36s
replicaset.apps/colorteller-black-6787756c7b 1 1 1 36s
replicaset.apps/colorteller-blue-55d6£99dcé 1 1 1 36s
replicaset.apps/colorteller-red-578866ffb 1 1 1 35s

NAME AGE
virtualservice.appmesh.k8s.aws/colorgateway.appmesh-demo 37s
virtualservice.appmesh.k8s.aws/colorteller.appmesh-demo 37s

NAME AGE

mesh.appmesh.k8s.aws/color-mesh 38s

NAME AGE
virtualnode.appmesh.k8s.aws/colorgateway 39s
virtualnode.appmesh.k8s.aws/colorteller 39s
virtualnode.appmesh.k8s.aws/colorteller-black 39s
virtualnode.appmesh.k8s.aws/colorteller-blue 39s
virtualnode.appmesh.k8s.aws/colorteller-red 38s

You can use the AWS Management Console or AWS CLI to see the App Mesh mesh, virtual
service, virtual router, route, and virtual node resources that were automatically created
by the controller. All of the resources were deployed to the appmesh-demo namespace, which was
labelled with appmesh.k8s.aws/sidecarInjectorWebhook: enabled. Since the injector saw
this label for the namespace, it injected the App Mesh sidecar container images into each of the

154

Amazon EKS User Guide
Run Application

pods. Using kubectl describe pod <pod-name> -n appmesh-demo, you can see that the App
Mesh sidecar container images are included in each of the pods that were deployed.

Run Application

Complete the following steps to run the application.

1.

In a terminal, use the following command to create a container in the appmesh-demo namespace
that has curl installed and open a shell to it. In later steps, this terminal is referred to as Terminal A.

kubectl run -n appmesh-demo -it curler --image=tutum/curl /bin/bash

From Terminal A, run the following command to curl the color gateway in the color mesh application
100 times. The gateway routes traffic to separate virtual nodes that return either white, black, or
blue as a response.

for i in {1..100}; do curl colorgateway:9080/color; echo; done

100 responses are returned. Each response looks similar to the following text:

{"color":"blue", "stats": {"black":0.36,"blue":0.32,"white":0.32}}

In this line of output, the colorgateway routed the request to the blue virtual node. The numbers for
each color denote the percentage of responses from each virtual node. The number for each color in
each response is cumulative over time. The percentage is similar for each color because, by default,
the weighting defined for each virtual node is the same in the color.yaml file you used to install the
sample application.

Leave Terminal A open.

Change Configuration

Change the configuration and run the application again to see the effect of the changes.

1.

In a separate terminal from Terminal A, edit the colorteller.appmesh-demo virtual service with the
following command.

kubectl edit VirtualService colorteller.appmesh-demo -n appmesh-demo

In the editor, you can see that the weight value of each virtualNodeName is 7. Because the weight
of each virtual node is the same, traffic routed to each virtual node is approximately even. To route
all traffic to the black node only, change the values for colorteller.appmesh-demo and colorteller-
blue to 0, as shown in the following text. Save the configuration and exit the editor.

spec:
meshName: color-mesh
routes:
- http:
action:
weightedTargets:
- virtualNodeName: colorteller.appmesh-demo
weight: 0
- virtualNodeName: colorteller-blue
weight: 0

155

https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html#mesh-gs-k8s-update-microservices
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html#mesh-gs-k8s-update-microservices

Amazon EKS User Guide
Remove Application

- virtualNodeName: colorteller-black.appmesh-demo
weight: 1

In Terminal A, run curl again with the following command.

for i in {1..100}; do curl colorgateway:9080/color; echo; done

This time, all lines of output look similar to the following text.

{"color":"black", "stats": {"black":0.64,"blue":0.18,"white":0.19}}

Black is the response every time because the gateway is now routing all traffic to the black virtual
node. Even though all traffic is now going to black, the white and blue virtual nodes still have
response percentages, because the numbers are based on relative percentages over time. When you
executed the requests in a previous step, white and blue responded, which is why they still have
response percentages. You can see that the relative percentages decrease for white and blue with
each response, while the percentage for black increases.

Remove Application

When you've finished with the sample application, you can remove it by completing the following steps.

1.

Use the following commands to remove the sample application and the App Mesh resources that
were created.

kubectl delete namespace appmesh-demo
kubectl delete mesh color-mesh

Optional: If you want to remove the controller and sidecar injector, see Remove integration
components (p.).

156

Amazon EKS User Guide

Deep Learning Containers

AWS Deep Learning Containers are a set of Docker images for training and serving models in TensorFlow
on Amazon EKS and Amazon Elastic Container Service (Amazon ECR). Deep Learning Containers provide
optimized environments with TensorFlow, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU
instances) libraries and are available in Amazon ECR.

To get started using AWS Deep Learning Containers on Amazon EKS, see AWS Deep Learning Containers
on Amazon EKS in the AWS Deep Learning AMI Developer Guide.

157

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-eks.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-eks.html

Amazon EKS User Guide
Identity and Access Management

Security in Amazon EKS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

« Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS services
in the AWS Cloud. For Amazon EKS, AWS is responsible for the Kubernetes control plane, which
includes the control plane nodes and etcd database. Third-party auditors regularly test and verify the
effectiveness of our security as part of the AWS compliance programs. To learn about the compliance
programs that apply to Amazon EKS, see AWS Services in Scope by Compliance Program.

« Security in the cloud - Your responsibility includes the following areas.

« The security configuration of the data plane, including the configuration of the security groups that
allow traffic to pass from the Amazon EKS control plane into the customer VPC

« The configuration of the worker nodes and the containers themselves
» The worker node guest operating system (including updates and security patches)
» Other associated application software:
« Setting up and managing network controls, such as firewall rules
« Managing platform-Llevel identity and access management, either with or in addition to IAM
« The sensitivity of your data, your company's requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when using
Amazon EKS. The following topics show you how to configure Amazon EKS to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and secure
your Amazon EKS resources.

Topics
« ldentity and Access Management for Amazon EKS (p. 158)
» Logging and Monitoring in Amazon EKS (p. 171)
« Compliance Validation for Amazon EKS (p. 171)
« Resilience in Amazon EKS (p. 172)
o Infrastructure Security in Amazon EKS (p. 172)
» Configuration and Vulnerability Analysis in Amazon EKS (p. 173)

Identity and Access Management for Amazon EKS

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use Amazon EKS resources. IAM is an AWS service that you can use with
no additional charge.

Topics
« Audience (p. 159)
« Authenticating With Identities (p. 159)
« Managing Access Using Policies (p. 161)

158

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/

Amazon EKS User Guide
Audience

« How Amazon EKS Works with IAM (p. 162)

» Amazon EKS Identity-Based Policy Examples (p. 164)

« Amazon EKS Service IAM Role (p. 167)

« Amazon EKS Worker Node IAM Role (p. 169)

« Troubleshooting Amazon EKS Identity and Access (p. 171)

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work you do in
Amazon EKS.

Service user — If you use the Amazon EKS service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more Amazon EKS features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in Amazon EKS, see
Troubleshooting Amazon EKS Identity and Access (p. 171).

Service administrator - If you're in charge of Amazon EKS resources at your company, you probably
have full access to Amazon EKS. It's your job to determine which Amazon EKS features and resources
your employees should access. You must then submit requests to your IAM administrator to change the
permissions of your service users. Review the information on this page to understand the basic concepts
of IAM. To learn more about how your company can use IAM with Amazon EKS, see How Amazon EKS
Works with IAM (p. 162).

IAM administrator - If you're an IAM administrator, you might want to learn details about how you can
write policies to manage access to Amazon EKS. To view example Amazon EKS identity-based policies
that you can use in IAM, see Amazon EKS Identity-Based Policy Examples (p. 164).

Authenticating With Identities

Authentication is how you sign in to AWS using your identity credentials. For more information about
signing in using the AWS Management Console, see The IAM Console and Sign-in Page in the IAM User
Guide.

You must be authenticated (signed in to AWS) as the AWS account root user, an IAM user, or by assuming
an IAM role. You can also use your company's single sign-on authentication, or even sign in using Google
or Facebook. In these cases, your administrator previously set up identity federation using IAM roles.
When you access AWS using credentials from another company, you are assuming a role indirectly.

To sign in directly to the AWS Management Console, use your password with your root user email or your
IAM user name. You can access AWS programmatically using your root user or IAM user access keys. AWS
provides SDK and command line tools to cryptographically sign your request using your credentials. If
you don't use AWS tools, you must sign the request yourself. Do this using Signature Version 4, a protocol
for authenticating inbound API requests. For more information about authenticating requests, see
Signature Version 4 Signing Process in the AWS General Reference.

Regardless of the authentication method that you use, you might also be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA) to
increase the security of your account. To learn more, see Using Multi-Factor Authentication (MFA) in AWS
in the IAM User Guide.

AWS Account Root User

When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and

159

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon EKS User Guide
Authenticating With Identities

is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. An 1AM user can have long-term credentials such as a user name and password or a set of
access keys. To learn how to generate access keys, see Managing Access Keys for IAM Users in the IAM
User Guide. When you generate access keys for an IAM user, make sure you view and securely save the key
pair. You cannot recover the secret access key in the future. Instead, you must generate a new access key
pair.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role

is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to Create an IAM User (Instead of a Role) in
the IAM User Guide.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS
Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
Roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

« Temporary IAM user permissions — An IAM user can assume an IAM role to temporarily take on
different permissions for a specific task.

« Federated user access — Instead of creating an IAM user, you can use existing identities from AWS
Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

« Cross-account access — You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

« AWS service access — A service role is an IAM role that a service assumes to perform actions in your
account on your behalf. When you set up some AWS service environments, you must define a role
for the service to assume. This service role must include all the permissions that are required for the
service to access the AWS resources that it needs. Service roles vary from service to service, but many
allow you to choose your permissions as long as you meet the documented requirements for that
service. Service roles provide access only within your account and cannot be used to grant access
to services in other accounts. You can create, modify, and delete a service role from within IAM. For
example, you can create a role that allows Amazon Redshift to access an Amazon S3 bucket on your
behalf and then load data from that bucket into an Amazon Redshift cluster. For more information, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

160

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon EKS User Guide
Managing Access Using Policies

« Applications running on Amazon EC2 - You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM Role to Grant
Permissions to Applications Running on Amazon EC2 Instances in the IAM User Guide.

To learn whether to use IAM roles, see When to Create an IAM Role (Instead of a User) in the IAM User
Guide.

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to IAM identities or AWS resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
AWS evaluates these policies when an entity (root user, IAM user, or IAM role) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are stored
in AWS as JSON documents. For more information about the structure and contents of JSON policy
documents, see Overview of JSON Policies in the IAM User Guide.

An IAM administrator can use policies to specify who has access to AWS resources, and what actions
they can perform on those resources. Every IAM entity (user or role) starts with no permissions. In other
words, by default, users can do nothing, not even change their own password. To give a user permission
to do something, an administrator must attach a permissions policy to a user. Or the administrator can
add the user to a group that has the intended permissions. When an administrator gives permissions to a
group, all users in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

|ldentity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, role, or group. These policies control what actions that identity can perform, on which
resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM
Policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that
you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing Between Managed Policies and Inline Policies in the IAM User Guide.

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource such as an Amazon S3

bucket. Service administrators can use these policies to define what actions a specified principal (account
member, user, or role) can perform on that resource and under what conditions. Resource-based policies

are inline policies. There are no managed resource-based policies.

Access Control Lists (ACLs)

Access control policies (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they are the only

161

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon EKS User Guide
How Amazon EKS Works with IAM

policy type that does not use the JSON policy document format. Amazon S3, AWS WAF, and Amazon
VPC are examples of services that support ACLs. To learn more about ACLs, see Access Control List (ACL)
Overview in the Amazon Simple Storage Service Developer Guide.

Other Policy Types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

« Permissions boundaries — A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection of
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions Boundaries for IAM Entities in the IAM User Guide.

« Service control policies (SCPs) — SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs Work in the AWS
Organizations User Guide.

» Session policies — Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session Policies in the IAM User Guide.

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy Evaluation Logic in the IAM User Guide.

How Amazon EKS Works with IAM

Before you use IAM to manage access to Amazon EKS, you should understand what IAM features are
available to use with Amazon EKS. To get a high-level view of how Amazon EKS and other AWS services
work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics
« Amazon EKS Identity-Based Policies (p. 162)
« Amazon EKS Resource-Based Policies (p. 163)
 Authorization Based on Amazon EKS Tags (p. 163)
« Amazon EKS IAM Roles (p. 163)

Amazon EKS Identity-Based Policies

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. Amazon EKS supports specific actions, resources,
and condition keys. To learn about all of the elements that you use in a JSON policy, see IAM JSON Policy
Elements Reference in the IAM User Guide.

162

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon EKS User Guide
How Amazon EKS Works with IAM

Actions

The Action element of an IAM identity-based policy describes the specific action or actions that will be
allowed or denied by the policy. Policy actions usually have the same name as the associated AWS API
operation. The action is used in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon EKS use the following prefix before the action: eks:. For example, to
grant someone permission to get descriptive information about an Amazon EKS cluster, you include
the DescribeCluster action in their policy. Policy statements must include either an Action or
NotAction element.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["eks:actionl", "eks:action2"]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with
the word Describe, include the following action:

"Action": "eks:Describe*"

To see a list of Amazon EKS actions, see Actions Defined by Amazon Elastic Kubernetes Service in the
IAM User Guide.

Resources
Amazon EKS does not support specifying resource ARNs in a policy.
Condition Keys

Amazon EKS does not provide any service-specific condition keys, but it does support using some global
condition keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM
User Guide.

Examples
To view examples of Amazon EKS identity-based policies, see Amazon EKS Identity-Based Policy
Examples (p. 164).

When you create an Amazon EKS cluster, the IAM entity user or role, such as a federated user that
creates the cluster, is automatically granted system:masters permissions in the cluster's RBAC
configuration. To grant additional AWS users or roles the ability to interact with your cluster, you must
edit the aws-auth ConfigMap within Kubernetes.

For additional information about working with the ConfigMap, see Managing Users or IAM Roles for your
Cluster (p. 116).

Amazon EKS Resource-Based Policies

Amazon EKS does not support resource-based policies.

Authorization Based on Amazon EKS Tags

Amazon EKS does not support tagging resources or controlling access based on tags.

Amazon EKS IAM Roles

An IAM role is an entity within your AWS account that has specific permissions.

163

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonelasticcontainerserviceforkubernetes.html#amazonelasticcontainerserviceforkubernetes-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon EKS User Guide
Identity-Based Policy Examples

Using Temporary Credentials with Amazon EKS

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-
account role. You obtain temporary security credentials by calling AWS STS API operations such as
AssumeRole or GetFederationToken.

Amazon EKS supports using temporary credentials.
Service-Linked Roles

Amazon EKS does not support service-linked roles.
Service Roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

Amazon EKS supports service roles. For more information, see the section called “Service IAM
Role” (p. 167) and the section called “Worker Node IAM Role” (p. 169).

Choosing an IAM Role in Amazon EKS

When you create a cluster resource in Amazon EKS, you must choose a role to allow Amazon EKS to
access several other AWS resources on your behalf. If you have previously created a service role, then
Amazon EKS provides you with a list of roles to choose from. It's important to choose a role that has
the Amazon EKS managed policies attached to it. For more information, see the section called “Check
for an Existing Service Role” (p. 167) and the section called “Check for an Existing Worker Node

Role” (p. 169).

Amazon EKS Identity-Based Policy Examples

By default, IAM users and roles don't have permission to create or modify Amazon EKS resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create 1AM policies that grant users and roles permission to perform specific API
operations on the specified resources they need. The administrator must then attach those policies to
the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see
Creating Policies on the JSON Tab in the IAM User Guide.

When you create an Amazon EKS cluster, the IAM entity user or role, such as a federated user that
creates the cluster, is automatically granted system:masters permissions in the cluster's RBAC
configuration. To grant additional AWS users or roles the ability to interact with your cluster, you must
edit the aws-auth ConfigMap within Kubernetes.

For additional information about working with the ConfigMap, see Managing Users or IAM Roles for your
Cluster (p. 116).

Topics
 Policy Best Practices (p. 165)
« Using the Amazon EKS Console (p. 165)
« Allow Users to View Their Own Permissions (p. 165)
« Update a Kubernetes cluster (p. 166)
« List or describe all clusters (p. 166)

164

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

Amazon EKS User Guide
Identity-Based Policy Examples

Policy Best Practices

Identity-based policies are very powerful. They determine whether someone can create, access, or delete
Amazon EKS resources in your account. These actions can incur costs for your AWS account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

« Get Started Using AWS Managed Policies — To start using Amazon EKS quickly, use AWS managed
policies to give your employees the permissions they need. These policies are already available in
your account and are maintained and updated by AWS. For more information, see Get Started Using
Permissions With AWS Managed Policies in the IAM User Guide.

« Grant Least Privilege — When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions as
necessary. Doing so is more secure than starting with permissions that are too lenient and then trying
to tighten them later. For more information, see Grant Least Privilege in the IAM User Guide.

« Enable MFA for Sensitive Operations — For extra security, require IAM users to use multi-factor
authentication (MFA) to access sensitive resources or APl operations. For more information, see Using
Multi-Factor Authentication (MFA) in AWS in the IAM User Guide.

« Use Policy Conditions for Extra Security — To the extent that it's practical, define the conditions under
which your identity-based policies allow access to a resource. For example, you can write conditions to
specify a range of allowable IP addresses that a request must come from. You can also write conditions
to allow requests only within a specified date or time range, or to require the use of SSL or MFA. For
more information, see IAM JSON Policy Elements: Condition in the IAM User Guide.

Using the Amazon EKS Console

To access the Amazon EKS console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the Amazon EKS resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (IAM users or roles) with that policy.

To ensure that those entities can still use the Amazon EKS console, create a policy with your own unique
name, such as AmazonEKSAdminPolicy. Attach the policy to the entities. For more information, see
Adding Permissions to a User in the IAM User Guide:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
lleks:*ll
]I
"Resource": "*"
}
]
¥

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the AWS API. Instead, allow access to only the actions that match the APl operation that you're
trying to perform.

Allow Users to View Their Own Permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

165

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon EKS User Guide
Identity-Based Policy Examples

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "ViewOwnUserInfo",

"Effect": "Allow",

"Action": [
"iam:GetUserPolicy",
"iam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"jam:ListUserPolicies",
"iam:GetUser"

1.

"Resource": [
"arn:aws:iam::*:user/${aws:username}"

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:ListAttachedGroupPolicies",
"iam:ListGroupPolicies",
"iam:ListPolicyVersions",
"iam:ListPolicies",
"iam:ListUsers"

1.

"Resource": "*"

Update a Kubernetes cluster

This example shows how you can create a policy that allows a user to update the Kubernetes version of

any dev cluster for an account, in any region.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "eks:UpdateClusterVersion",
"Resource": "arn:aws:eks:*:111122223333:cluster/dev"
}
]
}

List or describe all clusters

This example shows how you can create a policy that allows a user read-only access to list or describe all
clusters. An account must be able to list and describe clusters to use the update-kubeconfig AWS CLI

command.

"Version": "2012-10-17",

166

Amazon EKS User Guide
Service IAM Role

"Statement": [

{
"Effect": "Allow",
"Action": [
"eks:DescribeCluster",
"eks:ListClusters"
1,
"Resource": "*"
}

Amazon EKS Service IAM Role

Amazon EKS makes calls to other AWS services on your behalf to manage the resources that you use with
the service. Before you can create Amazon EKS clusters, you must create an 1AM role with the following
IAM policies:

e AmazonEKSServicePolicy

¢ AmazonEKSClusterPolicy

Check for an Existing Service Role

You can use the following procedure to check and see if your account already has the Amazon EKS
service role.

To check for the eksServiceRole in the IAM console

Open the IAM console at https://console.aws.amazon.com/iam/.
In the navigation pane, choose Roles.

Search the list of roles for eksServiceRole or AWSServiceRoleForAmazonEKS. If the role does
not exist, see Creating the Amazon EKS Service Role (p. 168) to create the role. If the role does
exist, select the role to view the attached policies.

Choose Permissions.

Ensure that the AmazonEKSServicePolicy and AmazonEKSClusterPolicy managed policies
are attached to the role. If the policies are attached, your Amazon EKS service role is properly
configured.

Choose Trust Relationships, Edit Trust Relationship.

Verify that the trust relationship contains the following policy. If the trust relationship matches the
policy below, choose Cancel. If the trust relationship does not match, copy the policy into the Policy
Document window and choose Update Trust Policy.

{
"Version": "2012-10-17",

"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "eks.amazonaws.com"
Iy

"Action": "sts:AssumeRole"

167

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEKSServicePolicy%24jsonEditor
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEKSClusterPolicy%24jsonEditor
https://console.aws.amazon.com/iam/

Amazon EKS User Guide
Service IAM Role

Creating the Amazon EKS Service Role

You can use the following procedure to create the Amazon EKS service role if you do not already have
one for your account.

To create your Amazon EKS service role in the IAM console

Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Roles, then Create role.

3. Choose EKS from the list of services, then Allows Amazon EKS to manage your clusters on your
behalf for your use case, then Next: Permissions.

4. Choose Next: Tags.

5. (Optional) Add metadata to the role by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM Entities in the IAM User Guide.

6. Choose Next: Review.

7. For Role name, enter a unique name for your role, such as eksServiceRole, then choose Create
role.

To create your Amazon EKS service role with AWS CloudFormation

1. Save the following AWS CloudFormation template to a text file on your local system.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Amazon EKS Service Role'

Resources:

eksServiceRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: '2012-10-17"'
Statement:
- Effect: Allow
Principal:
Service:
- eks.amazonaws.com
Action:
- sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/AmazonEKSServicePolicy
- arn:aws:iam::aws:policy/AmazonEKSClusterPolicy

Outputs:

RoleArn:
Description: The role that Amazon EKS will use to create AWS resources for
Kubernetes clusters
Value: !GetAtt eksServiceRole.Arn
Export:
Name: !Sub "${AWS::StackName}-RoleArn"

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
Choose Create stack.
For Specify template, select Upload a template file, and then choose Choose file.

AW

Choose the file you created earlier, and then choose Next.

168

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://console.aws.amazon.com/cloudformation/

Amazon EKS User Guide
Worker Node IAM Role

6. For Stack name, enter a name for your role, such as eksServiceRole, and then choose Next.
7. On the Configure stack options page, choose Next.

On the Review page, review your information, acknowledge that the stack might create IAM
resources, and then choose Create stack.

Amazon EKS Worker Node IAM Role

The Amazon EKS worker node kubelet daemon makes calls to AWS APIs on your behalf. Worker nodes
receive permissions for these API calls through an IAM instance profile and associated policies. Before
you can launch worker nodes and register them into a cluster, you must create an IAM role for those
worker nodes to use when they are launched. This requirement applies to worker nodes launched with
the Amazon EKS-optimized AMI provided by Amazon, or with any other worker node AMls that you
intend to use. Before you create worker nodes, you must create an IAM role with the following IAM
policies:

e AmazonEKSWorkerNodePolicy

e AmazonEKS_CNI_Policy

e AmazonEC2ContainerRegistryReadOnly

Check for an Existing Worker Node Role

You can use the following procedure to check and see if your account already has the Amazon EKS
worker node role.

To check for the NodeInstanceRole in the IAM console

Open the IAM console at https://console.aws.amazon.com/iam/.
2. Inthe navigation pane, choose Roles.

Search the list of roles for NodeInstanceRole. If the role does not exist, see Creating the Amazon
EKS Worker Node Role (p. 170) to create the role. If the role does exist, select the role to view the
attached policies.

Choose Permissions.

5. Ensure that the AmazonEKSWorkerNodePolicy, AmazonEKS_CNI_Policy, and
AmazonEC2ContainerRegistryReadOnly managed policies are attached to the role. If the policies
are attached, your Amazon EKS worker node role is properly configured.

Choose Trust Relationships, Edit Trust Relationship.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches the
policy below, choose Cancel. If the trust relationship does not match, copy the policy into the Policy
Document window and choose Update Trust Policy.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "ec2.amazonaws.com"

Iy

"Action": "sts:AssumeRole"

169

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy%24jsonEditor
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy%24jsonEditor
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly%24jsonEditor
https://console.aws.amazon.com/iam/

Amazon EKS User Guide
Worker Node IAM Role

Creating the Amazon EKS Worker Node Role

If you created your worker nodes by following the steps in the Getting Started with the AWS
Management Console (p. 8) or Getting Started with eksctl (p. 3) topics, then the worker node role
account already exists and you don't need to manually create it. You can use the following procedure to
create the Amazon EKS worker node role if you do not already have one for your account.

To create your Amazon EKS worker node role in the IAM console

Open the IAM console at https://console.aws.amazon.com/iam/.
Choose Roles, then Create role.

Choose EC2 from the list of services, then Next: Permissions.
Select the following policies:

PUwnN =

« AmazonEKSWorkerNodePolicy

« AmazonEKS_CNI_Policy

« AmazonEC2ContainerRegistryReadOnly
5. Choose Next: Tags.

6. (Optional) Add metadata to the role by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM Entities in the IAM User Guide.

7. Choose Next: Review.

8. For Role name, enter a unique name for your role, such as NodeInstanceRole, then choose Create
role.

To create your Amazon EKS instance role with AWS CloudFormation

1. Save the following AWS CloudFormation template to a text file on your local system.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Amazon EKS Worker Node Role'

Resources:

NodeInstanceRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17

Statement:
- Effect: Allow
Principal:

Service: ec2.amazonaws.com
Action: sts:AssumeRole
Path: "/"
ManagedPolicyArns:
- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
- arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly

Outputs:

RoleArn:
Description: The role that the worker node kubelet uses to make calls to the Amazon
EKS API on your behalf
Value: !GetAtt NodeInstanceRole.Arn
Export:

170

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon EKS User Guide
Troubleshooting

Name: !Sub "${AWS::StackName}-RoleArn"

Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
Choose Create stack.

For Specify template, select Upload a template file, and then choose Choose file.

Choose the file you created earlier, and then choose Next.

For Stack name, enter a name for your role, such as NodeInstanceRole, and then choose Next.
On the Configure stack options page, choose Next.

O N U A WN

On the Review page, review your information, acknowledge that the stack might create IAM
resources, and then choose Create stack.

Troubleshooting Amazon EKS Identity and Access

To diagnose and fix common issues that you might encounter when working with Amazon EKS and IAM
see Troubleshooting IAM (p. 182).

Logging and Monitoring in Amazon EKS

Amazon EKS control plane logging provides audit and diagnostic logs directly from the Amazon EKS
control plane to CloudWatch Logs in your account. These logs make it easy for you to secure and run
your clusters. You can select the exact log types you need, and logs are sent as log streams to a group
for each Amazon EKS cluster in CloudWatch. For more information, see Amazon EKS Control Plane
Logging (p. 38).

Amazon EKS is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in Amazon EKS. CloudTrail captures all API calls for Amazon EKS as events.
The calls captured include calls from the Amazon EKS console and code calls to the Amazon EKS API
operations. For more information, see Logging Amazon EKS API Calls with AWS CloudTrail (p. 174).

Compliance Validation for Amazon EKS

Third-party auditors assess the security and compliance of Amazon EKS as part of multiple AWS
compliance programs. These include SOC, PCl, ISO, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using Amazon EKS is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

« Security and Compliance Quick Start Guides — These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

« Architecting for HIPAA Security and Compliance Whitepaper - This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

o AWS Compliance Resources — This collection of workbooks and guides might apply to your industry
and location.

171

https://console.aws.amazon.com/cloudformation/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/

Amazon EKS User Guide
Resilience

« AWS Config — This AWS service assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

« AWS Security Hub - This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon EKS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between Availability Zones without interruption.
Availability Zones are more highly available, fault tolerant, and scalable than traditional single or
multiple data center infrastructures.

Amazon EKS runs Kubernetes control plane instances across multiple Availability Zones to ensure high
availability. Amazon EKS automatically detects and replaces unhealthy control plane instances, and it
provides automated version upgrades and patching for them.

This control plane consists of at least two API server nodes and three etcd nodes that run across three
Availability Zones within a Region. Amazon EKS automatically detects and replaces unhealthy control
plane instances, restarting them across the Region as needed. Amazon EKS leverages the architecture of
AWS Regions in order to maintain high availability. Because of this, Amazon EKS is able to offer an SLA
for API server endpoint availability.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure Security in Amazon EKS

As a managed service, Amazon EKS is protected by the AWS global network security procedures that are
described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access Amazon EKS through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

When you create an Amazon EKS cluster, you specify the Amazon VPC subnets for your cluster to use.
Amazon EKS requires subnets in at least two Availability Zones. We recommend a network architecture
that uses private subnets for your worker nodes and public subnets for Kubernetes to create internet-
facing load balancers within.

For more information about VPC considerations, see Cluster VPC Considerations (p. 82).

If you create your VPC and worker node groups with the AWS CloudFormation templates provided in the
Getting Started with Amazon EKS (p. 3) walkthrough, then your control plane and worker node security
groups are configured with our recommended settings.

For more information about security group considerations, see Cluster Security Group
Considerations (p. 84).

When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API server
that you use to communicate with your cluster (using Kubernetes management tools such as kubectl).

172

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/eks/sla
https://aws.amazon.com/eks/sla
http://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon EKS User Guide
Configuration and Vulnerability Analysis

By default, this API server endpoint is public to the internet, and access to the API server is secured using
a combination of AWS Identity and Access Management (IAM) and native Kubernetes Role Based Access
Control (RBAC).

You can enable private access to the Kubernetes API server so that all communication between your
worker nodes and the API server stays within your VPC. You can also completely disable public access to
your API server so that it's not accessible from the internet.

For more information about modifying cluster endpoint access, see Modifying Cluster Endpoint
Access (p. 35).

You can implement network policies with tools such as Project Calico (p. 98). Project Calico is a third
party open source project. For more information, see the Project Calico documentation.

Configuration and Vulnerability Analysis in
Amazon EKS

Amazon EKS platform versions represent the capabilities of the cluster control plane, including which
Kubernetes API server flags are enabled and the current Kubernetes patch version. New clusters are
deployed with the latest platform version. For details, see Platform Versions (p. 45).

You can update an Amazon EKS cluster (p. 26) to newer Kubernetes versions. As new Kubernetes versions
become available in Amazon EKS, we recommend that you proactively update your clusters to use

the latest available version. For more information about Kubernetes versions in EKS, see Amazon EKS
Kubernetes Versions (p. 43).

Track security or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or subscribe to
the associated RSS feed. Security and privacy events include an overview of the issue affected, packages,
and instructions for updating your instances to correct the issue.

You can use Amazon Inspector to check for unintended network accessibility of your worker nodes and
for vulnerabilities on those Amazon EC2 instances.

173

https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/
https://docs.projectcalico.org/v3.7/introduction/
https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html

Amazon EKS User Guide
Amazon EKS Information in CloudTrail

Logging Amazon EKS API Calls with
AWS CloudTrail

Amazon EKS is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in Amazon EKS. CloudTrail captures all API calls for Amazon EKS as events.
The calls captured include calls from the Amazon EKS console and code calls to the Amazon EKS API
operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket,
including events for Amazon EKS. If you don't configure a trail, you can still view the most recent events
in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon EKS, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amazon EKS Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Amazon
EKS, that activity is recorded in a CloudTrail event along with other AWS service events in Event history.
You can view, search, and download recent events in your AWS account. For more information, see
Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon EKS, create a trail.

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a

trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the

AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

« Overview for Creating a Trail
o CloudTrail Supported Services and Integrations
« Configuring Amazon SNS Notifications for CloudTrail

» Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple
Accounts

All Amazon EKS actions are logged by CloudTrail and are documented in the Amazon EKS API Reference.
For example, calls to the CreateCluster, ListClusters and DeleteCluster sections generate
entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

« Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

« Whether the request was made with temporary security credentials for a role or federated user.
« Whether the request was made by another AWS service.

For more information, see the CloudTrail userldentity Element.

174

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com//eks/latest/APIReference/
https://docs.aws.amazon.com//eks/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com//eks/latest/APIReference/API_ListClusters.html
https://docs.aws.amazon.com//eks/latest/APIReference/API_DeleteCluster.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon EKS User Guide
Understanding Amazon EKS Log File Entries

Understanding Amazon EKS Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they
don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateCluster action.

"eventVersion": "1.05",
"userIdentity": {
"type": "IAMUser",
"principalId": "AKIAIOSFODNN7EXAMPLE",
"arn": "arn:aws:iam::111122223333:user/ericn",
"accountId": "111122223333",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "ericn"
T
"eventTime": "2018-05-28T19:16:43Z",
"eventSource": "eks.amazonaws.com",
"eventName": "CreateCluster",
"awsRegion": "us-west-2",
"sourceIPAddress": "205.251.233.178",
"userAgent": "PostmanRuntime/6.4.0",
"requestParameters": {
"resourcesVpcConfig": {
"subnetIds": [
"subnet-a670c2df",
"subnet-4£8c5004"
1
Iy
"roleArn": "arn:aws:iam::111122223333:role/AWSServiceRoleForAmazonEKS-CAC1G1VH3ZKzZ",
"clusterName": "test"
T
"responseElements": {
"cluster": {
"clusterName": "test",
"status": "CREATING",
"createdAt": 1527535003.208,
"certificateAuthority": {},
"arn": "arn:aws:eks:us-west-2:111122223333:cluster/test",
"roleArn": "arn:aws:iam::111122223333:role/AWSServiceRoleForAmazonEKS-CAC1G1VH3ZKzZ",
"version": "1.10",
"resourcesVpcConfig": {
"securityGroupIds": [],
"vpcId": "vpc-21277358",
"subnetIds": [
"subnet-a670c2df",
"subnet-4£8c5004"
1
}
}
T
"requestID": "a7a0735d-62ab-11e8-9£f79-81ce5b2b7d37",
"eventID": "eab22523-174a-499c-9dd6-91e7be3ff8e3",
"readOnly": false,
"eventType": "AwsApiCall",
"recipientAccountId": "111122223333"

175

https://docs.aws.amazon.com//eks/latest/APIReference/API_CreateCluster.html

Amazon EKS User Guide
Management Tools

Related Projects

These open source projects extend the functionality of Kubernetes clusters running on AWS, including
clusters managed by Amazon EKS.

Management Tools

Related management tools for Amazon EKS and Kubernetes clusters.

eksctl

eksctl is a simple CLI tool for creating clusters on Amazon EKS.

« Project URL: https://eksctl.io/
« Project documentation: https://eksctl.io/
« AWS open source blog: eksctl: Amazon EKS Cluster with One Command

AWS Service Operator

AWS Service Operator allows you to create AWS resources using kubectl.

« Project URL: https://github.com/awslabs/aws-service-operator
« Project documentation: https://github.com/awslabs/aws-service-operator/blob/master/readme.adoc
« AWS open source blog: AWS Service Operator for Kubernetes Now Available

Networking

Related networking projects for Amazon EKS and Kubernetes clusters.

Amazon VPC CNI plugin for Kubernetes

Amazon EKS supports native VPC networking via the Amazon VPC CNI plugin for Kubernetes. Using this
CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC
network. For more information, see Pod Networking (p. 86) and CNI Configuration Variables (p. 88).

« Project URL: https://github.com/aws/amazon-vpc-cni-k8s
« Project documentation: https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md

AWS Application Load Balancer (ALB) Ingress
Controller for Kubernetes

The AWS ALB Ingress Controller satisfies Kubernetes ingress resources by provisioning Application Load
Balancers.

176

https://eksctl.io/
https://eksctl.io/
http://aws.amazon.com/blogs/opensource/eksctl-eks-cluster-one-command/
https://github.com/awslabs/aws-service-operator
https://github.com/awslabs/aws-service-operator/blob/master/readme.adoc
http://aws.amazon.com/blogs/opensource/aws-service-operator-kubernetes-available/
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md

Amazon EKS User Guide
ExternalDNS

« Project URL: https://github.com/kubernetes-sigs/aws-alb-ingress-controller

« Project documentation: https://github.com/kubernetes-sigs/aws-alb-ingress-controller/tree/master/
docs

« AWS open source blog: Kubernetes Ingress with AWS ALB Ingress Controller

ExternalDNS

ExternalDNS synchronizes exposed Kubernetes services and ingresses with DNS providers including
Amazon Route 53 and AWS Service Discovery.

« Project URL: https://github.com/kubernetes-incubator/external-dns

» Project documentation: https://github.com/kubernetes-incubator/external-dns/blob/master/docs/
tutorials/aws.md

Security

Related security projects for Amazon EKS and Kubernetes clusters.

AWS IAM Authenticator

A tool to use AWS IAM credentials to authenticate to a Kubernetes cluster. For more information, see
Installing aws-iam-authenticator (p. 109).

» Project URL: https://github.com/kubernetes-sigs/aws-iam-authenticator

« Project documentation: https://github.com/kubernetes-sigs/aws-iam-authenticator/blob/master/
README.md

« AWS open source blog: Deploying the AWS IAM Authenticator to kops

Storage

Related storage projects for Amazon EKS and Kubernetes clusters.

Amazon EFS CSI Driver

The Amazon Elastic File System Container Storage Interface (CSI) Driver implements the CSI specification
for container orchestrators to manage the lifecycle of Amazon EFS resources.

« Project URL: https://github.com/aws/csi-driver-amazon-efs
« Project documentation: https://github.com/aws/aws-efs-csi-driver/blob/master/docs/README.md

Machine Learning

Related machine learning projects for Amazon EKS and Kubernetes clusters.

Kubeflow

A machine learning toolkit for Kubernetes.

177

https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://github.com/kubernetes-sigs/aws-alb-ingress-controller/tree/master/docs
https://github.com/kubernetes-sigs/aws-alb-ingress-controller/tree/master/docs
http://aws.amazon.com/blogs/opensource/kubernetes-ingress-aws-alb-ingress-controller/
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes-incubator/external-dns/blob/master/docs/tutorials/aws.md
https://github.com/kubernetes-incubator/external-dns/blob/master/docs/tutorials/aws.md
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator/blob/master/README.md
https://github.com/kubernetes-sigs/aws-iam-authenticator/blob/master/README.md
http://aws.amazon.com/blogs/opensource/deploying-heptio-authenticator-kops/
https://github.com/aws/csi-driver-amazon-efs
https://github.com/aws/aws-efs-csi-driver/blob/master/docs/README.md

Amazon EKS User Guide
Auto Scaling

« Project URL: https://www.kubeflow.org/
« Project documentation: https://www.kubeflow.org/docs/
« AWS open source blog: Kubeflow on Amazon EKS

Auto Scaling

Related auto scaling projects for Amazon EKS and Kubernetes clusters.

Cluster Autoscaler

Cluster Autoscaler is a tool that automatically adjusts the size of the Kubernetes cluster based on CPU
and memory pressure.

« Project URL: https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

« Project documentation: https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/
cloudprovider/aws/README.md

« Amazon EKS workshop: https://eksworkshop.com/scaling/deploy_ca/

Escalator

Escalator is a batch or job optimized horizontal autoscaler for Kubernetes.

» Project URL: https://github.com/atlassian/escalator
« Project documentation: https://github.com/atlassian/escalator/blob/master/docs/README.md

Monitoring

Related monitoring projects for Amazon EKS and Kubernetes clusters.

Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit.

« Project URL: https://prometheus.io/
« Project documentation: https://prometheus.io/docs/introduction/overview/
o Amazon EKS workshop: https://eksworkshop.com/monitoring/

Continuous Integration / Continuous Deployment

Related CI/CD projects for Amazon EKS and Kubernetes clusters.

Jenkins X

Cl/CD solution for modern cloud applications on Amazon EKS and Kubernetes clusters.

 Project URL: https://jenkins-x.io/
« Project documentation: https://jenkins-x.io/documentation/

178

https://www.kubeflow.org/
https://www.kubeflow.org/docs/
http://aws.amazon.com/blogs/opensource/kubeflow-amazon-eks/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://eksworkshop.com/scaling/deploy_ca/
https://github.com/atlassian/escalator
https://github.com/atlassian/escalator/blob/master/docs/README.md
https://prometheus.io/
https://prometheus.io/docs/introduction/overview/
https://eksworkshop.com/monitoring/
https://jenkins-x.io/
https://jenkins-x.io/documentation/

Amazon EKS User Guide
Jenkins X

« AWS open source blog: Continuous Delivery with Amazon EKS and Jenkins X

179

http://aws.amazon.com/blogs/opensource/continuous-delivery-eks-jenkins-x/

Amazon EKS User Guide
Insufficient Capacity

Amazon EKS Troubleshooting

This chapter covers some common errors that you may see while using Amazon EKS and how to work
around them.

Insufficient Capacity

If you receive the following error while attempting to create an Amazon EKS cluster, then one of the
Availability Zones you specified does not have sufficient capacity to support a cluster.

Cannot create cluster 'example-cluster' because us-east-1d, the targeted
availability zone, does not currently have sufficient capacity to support
the cluster. Retry and choose from these availability zones: us-east-1la, us-
east-1b, us-east-1c

Retry creating your cluster with subnets in your cluster VPC that are hosted in the Availability Zones
returned by this error message.

aws—-iam-authenticator Not Found

If you receive the error "aws-iam-authenticator": executable file not found in $PATH
then your kubectl is not configured for Amazon EKS. For more information, see Installing aws-iam-
authenticator (p. 109).

Worker Nodes Fail to Join Cluster

There are two common reasons that prevent worker nodes from joining the cluster:

o The aws-auth-cm. yaml file does not have the correct IAM role ARN for your worker nodes. Ensure
that the worker node IAM role ARN (not the instance profile ARN) is specified in your aws-auth-
cm.yaml file. For more information, see Launching Amazon EKS Worker Nodes (p. 57).

« The ClusterName in your worker node AWS CloudFormation template does not exactly match the
name of the cluster you want your worker nodes to join. Passing an incorrect value to this field results
in an incorrect configuration of the worker node's /var/lib/kubelet/kubeconfig file, and the
nodes will not join the cluster.

Unauthorized or Access Denied (kubectl)

If you receive one of the following errors while running kubectl commands, then your kubectl is not
configured properly for Amazon EKS or the IAM user or role credentials that you are using do not map to
a Kubernetes RBAC user with sufficient permissions in your Amazon EKS cluster.

e could not get token: AccessDenied: Access denied
e error: You must be logged in to the server (Unauthorized)

e error: the server doesn't have a resource type "svc"

180

Amazon EKS User Guide
hostname doesn't match

This could be because the cluster was created with one set of AWS credentials (from an IAM user or role),
and kubectl is using a different set of credentials.

When an Amazon EKS cluster is created, the IAM entity (user or role) that creates the cluster is added

to the Kubernetes RBAC authorization table as the administrator (with system:master permissions).
Initially, only that IAM user can make calls to the Kubernetes API server using kubectl. For more
information, see Managing Users or IAM Roles for your Cluster (p. 116). Also, the AWS IAM Authenticator
for Kubernetes uses the AWS SDK for Go to authenticate against your Amazon EKS cluster. If you use the
console to create the cluster, you must ensure that the same IAM user credentials are in the AWS SDK
credential chain when you are running kubectl commands on your cluster.

If you install and configure the AWS CLI, you can configure the IAM credentials for your user. If the

AWS CLI is configured properly for your user, then the AWS IAM Authenticator for Kubernetes can find
those credentials as well. For more information, see Configuring the AWS CLI in the AWS Command Line
Interface User Guide.

If you assumed a role to create the Amazon EKS cluster, you must ensure that kubectl is configured to
assume the same role. Use the following command to update your kubeconfig file to use an IAM role. For
more information, see Create a kubeconfig for Amazon EKS (p. 112).

aws --region region eks update-kubeconfig --name cluster_ name --role-arn
arn:aws:iam: :aws_account_id:role/role_name

To map an IAM user to a Kubernetes RBAC user, see Managing Users or IAM Roles for your
Cluster (p. 116).

hostname doesn't match

Your system's Python version must be 2.7.9 or greater. Otherwise, you receive hostname doesn't
match errors with AWS CLI calls to Amazon EKS. For more information, see What are "hostname doesn't
match" errors? in the Python Requests FAQ.

getsockopt: no route to host

Docker runsin the 172.17.0.0/16 CIDR range in Amazon EKS clusters. We recommend that your
cluster's VPC subnets do not overlap this range. Otherwise, you will receive the following error:

Error: : error upgrading connection: error dialing backend: dial tcp 172.17.nn.nn:10250:
getsockopt: no route to host

CNI Log Collection Tool

The Amazon VPC CNI plugin for Kubernetes has its own troubleshooting script (which is available on
worker nodes at /opt/cni/bin/aws-cni-support.sh) that you can use to collect diagnostic logs for
support cases and general troubleshooting.

The script collects the following diagnostic information:

o L-IPAMD introspection data
« Metrics
« Kubelet introspection data

181

https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors
http://docs.python-requests.org/en/master/community/faq/#what-are-hostname-doesn-t-match-errors

Amazon EKS User Guide
1AM

« ifconfig output

 ip rule show output

« iptables-save output

» iptables -nvL output

« iptables -nvL -t nat output

« A dump of the CNI configuration

o Kubelet logs

« Stored /var/log/messages

« Worker node's route table information (via ip route)

o The sysctls output of /proc/sys/net/ipv4/conf/{all,default,eth0}/rp_filter

Use the following command to run the script on your worker node:

sudo bash /opt/cni/bin/aws-cni-support.sh

Note
If the script is not present at that location, then the CNI container failed to run. You can
manually download and run the script with the following command:

curl https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/master/scripts/aws-
cni-support.sh | sudo bash

The diagnostic information is collected and stored at /var/log/aws-routed-eni/aws-cni-
support.tar.gz.

Troubleshooting IAM

This topic covers some common errors that you may see while using Amazon EKS with IAM and how to
work around them.

AccessDeniedException

If you receive an AccessDeniedException when calling an AWS API operation, then the AWS Identity
and Access Management (IAM) user or role credentials that you are using do not have the required
permissions to make that call.

An error occurred (AccessDeniedException) when calling the DescribeCluster operation:
User: arn:aws:iam::111122223333:user/user_name is not authorized to perform:
eks:DescribeCluster on resource: arn:aws:eks:us-west-2:111122223333:cluster/cluster_name

In the above example message, the user does not have permissions to call the Amazon EKS
DescribeCluster APl operation. To provide Amazon EKS admin permissions to a user, see Amazon EKS
Identity-Based Policy Examples (p. 164).

For more general information about IAM, see Controlling Access Using Policies in the IAM User Guide.

| Am Not Authorized to Perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, then you must
contact your administrator for assistance. Your administrator is the person that provided you with your

182

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html

Amazon EKS User Guide
| Want to View My Access Keys

user name and password. Ask that person to update your policies to allow you to pass a role to Amazon
EKS.

Some AWS services allow you to pass an existing role to that service, instead of creating a new service
role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to
perform an action in Amazon EKS. However, the action requires the service to have permissions granted
by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

| Want to View My Access Keys

After you create your IAM user access keys, you can view your access key ID at any time. However, you
can't view your secret access key again. If you lose your secret key, you must create a new access key pair.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and a secret
access key (for example, wJalrXUtnFEMI /K7MDENG/bPxRfiCYEXAMPLEKEY). Like a user name and
password, you must use both the access key ID and secret access key together to authenticate your
requests. Manage your access keys as securely as you do your user name and password.

Important
Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your account.

When you create an access key pair, you are prompted to save the access key ID and secret access key in
a secure location. The secret access key is available only at the time you create it. If you lose your secret
access key, you must add new access keys to your IAM user. You can have a maximum of two access keys.
If you already have two, you must delete one key pair before creating a new one. To view instructions,
see Managing Access Keys in the IAM User Guide.

I'm an Administrator and Want to Allow Others to
Access Amazon EKS

To allow others to access Amazon EKS, you must create an IAM entity (user or role) for the person or
application that needs access. They will use the credentials for that entity to access AWS. You must then
attach a policy to the entity that grants them the correct permissions in Amazon EKS.

To get started right away, see Creating Your First IAM Delegated User and Group in the IAM User Guide.

| Want to Allow People Outside of My AWS Account
to Access My Amazon EKS Resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to
your resources.

To learn more, consult the following:

« To learn whether Amazon EKS supports these features, see How Amazon EKS Works with IAM (p. 162).

183

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html

Amazon EKS User Guide
| Want to Allow People Outside of My AWS
Account to Access My Amazon EKS Resources

To learn how to provide access to your resources across AWS accounts that you own, see Providing
Access to an IAM User in Another AWS Account That You Own in the IAM User Guide.

To learn how to provide access to your resources to third-party AWS accounts, see Providing Access to
AWS Accounts Owned by Third Parties in the IAM User Guide.

To learn how to provide access through identity federation, see Providing Access to Externally
Authenticated Users (Identity Federation) in the IAM User Guide.

To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

184

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon EKS User Guide

Amazon EKS Service Limits

The following table provides the default limits for Amazon EKS for an AWS account that can be changed.
For more information, see AWS Service Limits in the Amazon Web Services General Reference.
Resource Default Limit

Maximum number of Amazon EKS clusters per 50
region, per account

The following table provides limitations for Amazon EKS that cannot be changed.

Resource Default Limit

Maximum number of control plane security 5
groups per cluster (these are specified when you
create the cluster)

185

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon EKS User Guide

Document History for Amazon EKS

The following table describes the major updates and new features for the Amazon EKS User Guide. We

also update the documentation frequently to address the feedback that you send us.

update-history-change
Amazon EKS platform version

update

Amazon EKS region
expansion (p. 186)

Kubernetes 1.10 deprecated on
Amazon EKS

Added topic on ALB Ingress
Controller

New Amazon EKS-optimized AMI

Kubernetes Version 1.13

New Amazon EKS-optimized AMI
patched for AWS-2019-005

Announcing deprecation of
Kubernetes 1.10 in Amazon EKS

Amazon EKS platform version
update

update-history-description

New platform versions to
address CVE-2019-11247 and
CVE-2019-11249.

Amazon EKS is now available
in the Asia Pacific (Hong Kong)
(ap-east-1) region.

Kubernetes version 1.10 is no
longer supported on Amazon
EKS. Please update any 1.10
clusters to version 1.11 or
higher in order to avoid service
interruption.

The AWS ALB Ingress Controller
for Kubernetes is a controller
that triggers the creation of an
Application Load Balancer when
Ingress resources are created.

Removing unnecessary kubectl
binary from AMls.

Added Kubernetes version 1.13
support for new clusters and
version upgrades.

Amazon EKS has updated the
Amazon EKS-optimized AMI

to address the vulnerabilities
described in AWS-2019-005.

Amazon EKS will deprecate
Kubernetes version 1.10 on July
22, 2019. On this day, you will
no longer be able to create new
1.10 clusters and all Amazon
EKS clusters running Kubernetes
version 1.10 will be updated to
the latest available platform
version of Kubernetes version
1.11.

New platform version for
Kubernetes 1.11 and 1.10
clusters to support custom DNS
names in the Kubelet certificate
and improve etcd performance.

update-history-date
August 5, 2019

July 31, 2019

July 30, 2019

July 11, 2019

July 3, 2019

June 18, 2019

June 17, 2019

May 21, 2019

May 21, 2019

186

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-1.13.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://aws.amazon.com/security/security-bulletins/AWS-2019-005/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html

Amazon EKS User Guide

Getting Started with eksctl

AWS CLI get-token
command (p. 186)

Amazon EKS platform version
update

Prometheus tutorial

Amazon EKS Control Plane
Logging

Kubernetes Version
1.12 (p. 186)

Added App Mesh Getting
Started Guide

This getting started guide helps
you to install all of the required
resources to get started with
Amazon EKS using eksctl, a
simple command line utility

for creating and managing
Kubernetes clusters on Amazon
EKS.

The aws eks get-token
command was added to the
AWS CLI so that you no longer
need to install the AWS IAM
Authenticator for Kubernetes
to create client security
tokens for cluster API server
communication. Upgrade your

AWS CLlI installation to the latest

version to take advantage of
this new functionality. For more
information, see Installing the
AWS Command Line Interface in

the AWS Command Line Interface

User Guide.

New platform version for
Kubernetes 1.12 clusters to
support custom DNS names

in the Kubelet certificate and
improve etcd performance.
This fixes a bug that caused
worker node Kubelet daemons
to request a new certificate
every few seconds.

Added topic for deploying

Prometheus to your Amazon EKS

cluster.

Amazon EKS control plane
logging makes it easy for

you to secure and run your
clusters by providing audit and
diagnostic logs directly from
the Amazon EKS control plane
to CloudWatch Logs in your
account.

Added Kubernetes version 1.12
support for new clusters and
version upgrades.

Added documentation for
getting started with App Mesh
and Kubernetes.

May 10, 2019

May 10, 2019

May 8, 2019

April 5, 2019

April 4, 2019

March 28, 2019

March 27, 2019

187

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html

Amazon EKS User Guide

Amazon EKS API server endpoint
private access

Added topic for installing the
Kubernetes metrics server

Added list of related open source
projects

Added topic for installing Helm
locally

Amazon EKS platform version
update

Increased cluster limit

Amazon EKS region
expansion (p. 186)

New Amazon EKS-optimized AMI
patched for ALAS-2019-1156

New Amazon EKS-optimized AMI
patched for ALAS2-2019-1141

Amazon EKS region
expansion (p. 186)

Added documentation for
disabling public access for
your Amazon EKS cluster's
Kubernetes API server endpoint.

The Kubernetes metrics server is
an aggregator of resource usage
data in your cluster.

These open source projects
extend the functionality of
Kubernetes clusters running
on AWS, including clusters
managed by Amazon EKS.

The helm package manager for
Kubernetes helps you install
and manage applications on
your Kubernetes cluster. This
topic helps you install and run
the helmand tiller binaries
locally so that you can install
and manage charts using the
helm CLI on your local system.

New platform version updating
Amazon EKS Kubernetes 1.11
clusters to patch level 1.11.8 to
address CVE-2019-1002100.

Amazon EKS has increased the
number of clusters that you can
create in a region from 3 to 50.

Amazon EKS is now available in
the EU (London) (eu-west-2),
EU (Paris) (eu-west-3), and Asia
Pacific (Mumbai) (ap-south-1)
regions.

Amazon EKS has updated the
Amazon EKS-optimized AMI
to address the vulnerability
described in ALAS-2019-1156.

Amazon EKS has updated the
Amazon EKS-optimized AMI to
address the CVEs referenced in
ALAS2-2019-1141.

Amazon EKS is now available
in the Asia Pacific (Seoul) (ap-
northeast-2) region.

March 19, 2019

March 18, 2019

March 15, 2019

March 11, 2019

March 8, 2019

February 13, 2019

February 13, 2019

February 11, 2019

January 9, 2019

January 9, 2019

188

https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://discuss.kubernetes.io/t/kubernetes-security-announcement-v1-11-8-1-12-6-1-13-4-released-to-address-medium-severity-cve-2019-1002100/5147
https://docs.aws.amazon.com/eks/latest/userguide/service_limits.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://alas.aws.amazon.com/ALAS-2019-1156.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://alas.aws.amazon.com/AL2/ALAS-2019-1141.html

Amazon EKS User Guide

Amazon EKS region
expansion (p. 186)

Amazon EKS cluster updates

Amazon EKS region
expansion (p. 186)

Amazon EKS platform version
update

Added version 1.0.0 support for
the Application Load Balancer
ingress controller

Added support for CNI network
configuration

Added support for
MutatingAdmissionWebhook
and
ValidatingAdmissionWebhook

Added Partner AMI information

Added instructions for AWS CLI
update-kubeconfig command

New Amazon EKS-optimized
AMls

Amazon EKS is now available

in the following additional
regions: EU (Frankfurt) (eu-
central-1), Asia Pacific (Tokyo)
(ap-northeast-1), Asia Pacific
(Singapore) (ap-southeast-1),
and Asia Pacific (Sydney) (ap-
southeast-2).

Added documentation for
Amazon EKS cluster Kubernetes
version updates and worker
node replacement.

Amazon EKS is now available
in the EU (Stockholm) (eu-
north-1) region.

New platform version
updating Kubernetes to patch
level 1.10.11 to address
CVE-2018-1002105.

The Application Load Balancer
ingress controller releases
version 1.0.0 with formal
support from AWS.

The Amazon VPC CNI plugin

for Kubernetes version 1.2.1
now supports custom network
configuration for secondary pod
network interfaces.

Amazon EKS platform version
1.10-eks.2 now supports
MutatingAdmissionWebhook
and

ValidatingAdmissionWebhook

admission controllers.

Canonical has partnered with
Amazon EKS to create worker
node AMIs that you can use in
your clusters.

Amazon EKS has added the
update-kubeconfig to the
AWS CLI to simplify the process
of creating a kubeconfig file
for accessing your cluster.

Amazon EKS has updated the
Amazon EKS-optimized AMls
(with and without GPU support)
to provide various security fixes
and AMI optimizations.

December 19, 2018

December 12, 2018

December 11, 2018

December 4, 2018

November 20, 2018

October 16, 2018

October 10, 2018

October 3, 2018

September 21, 2018

September 13, 2018

189

https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-workers.html
https://docs.aws.amazon.com/eks/latest/userguide/update-workers.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://aws.amazon.com/security/security-bulletins/AWS-2018-020/
https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://docs.aws.amazon.com/eks/latest/userguide/cni-custom-network.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-custom-network.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-partner-amis.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html

Amazon EKS User Guide

Amazon EKS region Amazon EKS is now availablein ~ September 5, 2018
expansion (p. 186) the EU (Ireland) (eu-west-1)

region.
Amazon EKS platform version New platform version with August 31, 2018
update support for Kubernetes

aggregation layer and the
Horizontal Pod Autoscaler(HPA).

New Amazon EKS-optimized Amazon EKS has updated the August 22, 2018
AMiIs and GPU support Amazon EKS-optimized AMI to

use a new AWS CloudFormation

worker node template and

bootstrap script. In addition, a

new Amazon EKS-optimized AMI

with GPU support is available.

New Amazon EKS-optimized AMI Amazon EKS has updated the August 14, 2018
patched for ALAS2-2018-1058 Amazon EKS-optimized AMI to

address the CVEs referenced in

ALAS2-2018-1058.

Amazon EKS-optimized AMI Amazon EKS has open-sourced July 10, 2018
build scripts the build scripts that are used to

build the Amazon EKS-optimized

AMI. These build scripts are now

available on GitHub.

Amazon EKS initial Initial documentation for service June 5, 2018
release (p. 186) launch

190

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/eks/latest/userguide/gpu-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/gpu-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://alas.aws.amazon.com/AL2/ALAS-2018-1058.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html

Amazon EKS User Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

191

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon EKS
	Table of Contents
	What Is Amazon EKS?
	Amazon EKS Control Plane Architecture
	How Does Amazon EKS Work?

	Getting Started with Amazon EKS
	Getting Started with eksctl
	Prerequisites
	Install the Latest AWS CLI
	Configure Your AWS CLI Credentials
	Install eksctl
	Install and Configure kubectl for Amazon EKS

	Create Your Amazon EKS Cluster and Worker Nodes
	Next Steps

	Getting Started with the AWS Management Console
	Amazon EKS Prerequisites
	Create your Amazon EKS Service Role
	Create your Amazon EKS Cluster VPC
	Install and Configure kubectl for Amazon EKS
	Install the Latest AWS CLI

	Step 1: Create Your Amazon EKS Cluster
	Step 2: Create a kubeconfig File
	Step 3: Launch and Configure Amazon EKS Worker Nodes
	Next Steps

	Amazon EKS Clusters
	Creating an Amazon EKS Cluster
	Updating an Amazon EKS Cluster Kubernetes Version
	Amazon EKS Cluster Endpoint Access Control
	Modifying Cluster Endpoint Access
	Accessing the API Server from within the VPC

	Amazon EKS Control Plane Logging
	Enabling and Disabling Control Plane Logs
	Viewing Cluster Control Plane Logs

	Deleting a Cluster
	Amazon EKS Kubernetes Versions
	Available Amazon EKS Kubernetes Versions
	Kubernetes 1.13
	Amazon EKS Version Deprecation

	Platform Versions
	Kubernetes version 1.13
	Kubernetes version 1.12
	Kubernetes version 1.11
	Kubernetes version 1.10

	Worker Nodes
	Amazon EKS-Optimized AMI
	Amazon EKS-Optimized AMI Build Scripts
	Amazon EKS-Optimized AMI with GPU Support
	Example GPU Manifest

	Amazon EKS Partner AMIs
	Launching Amazon EKS Worker Nodes
	Worker Node Updates
	Migrating to a New Worker Node Group
	Updating an Existing Worker Node Group

	Storage Classes
	Load Balancing and Ingress
	Load Balancing
	Subnet Tagging for Load Balancers

	ALB Ingress Controller on Amazon EKS

	Amazon EKS Networking
	Creating a VPC for Your Amazon EKS Cluster
	Next Steps

	Cluster VPC Considerations
	VPC IP Addressing
	VPC Tagging Requirement
	Subnet Tagging Requirement
	Private Subnet Tagging Requirement for Internal Load Balancers
	Public Subnet Tagging Option for External Load Balancers

	Cluster Security Group Considerations
	Pod Networking
	CNI Configuration Variables
	Installing CoreDNS
	External Source Network Address Translation (SNAT)
	CNI Custom Networking
	Amazon VPC CNI Plugin for Kubernetes Upgrades
	Installing Calico on Amazon EKS
	Stars Policy Demo

	Managing Cluster Authentication
	Installing kubectl
	Installing aws-iam-authenticator
	Create a kubeconfig for Amazon EKS
	Managing Users or IAM Roles for your Cluster

	The eksctl Command Line Utility
	Installing or Upgrading eksctl

	Pod Security Policy
	Amazon EKS Default Pod Security Policy

	Launch a Guest Book Application
	Installing the Kubernetes Metrics Server
	Control Plane Metrics with Prometheus
	Viewing the Raw Metrics
	Deploying Prometheus

	Using Helm with Amazon EKS
	Tutorial: Deploy the Kubernetes Web UI (Dashboard)
	Prerequisites
	Step 1: Deploy the Dashboard
	Step 2: Create an eks-admin Service Account and Cluster Role Binding
	Step 3: Connect to the Dashboard
	Step 4: Next Steps

	Getting Started with AWS App Mesh and Kubernetes
	Prerequisites
	Step 1: Create Your Service Mesh
	Step 2: Create Your Virtual Nodes
	Step 3: Create Your Virtual Routers
	Step 4: Create Your Routes
	Step 5: Create Your Virtual Services
	Step 6: Updating Your Microservice Pod Specifications

	Tutorial: Configure App Mesh Integration with Kubernetes
	Prerequisites
	Step 1: Install the Controller and Custom Resources
	Step 2: Install the Sidecar Injector
	

	Step 3: Configure App Mesh
	Create Kubernetes Custom Resources
	Create a Mesh
	Create a Virtual Service
	Create a Virtual Node

	Sidecar Injection
	Enable Sidecar Injection for a Namespace
	Override Sidecar Injector Default Behavior

	Step 4: Remove Integration Components (Optional)
	Deploy a Mesh Connected Service
	Prerequisites
	Deploy a Sample Application
	Run Application
	Change Configuration
	Remove Application

	Deep Learning Containers
	Security in Amazon EKS
	Identity and Access Management for Amazon EKS
	Audience
	Authenticating With Identities
	AWS Account Root User
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	How Amazon EKS Works with IAM
	Amazon EKS Identity-Based Policies
	Actions
	Resources
	Condition Keys
	Examples

	Amazon EKS Resource-Based Policies
	Authorization Based on Amazon EKS Tags
	Amazon EKS IAM Roles
	Using Temporary Credentials with Amazon EKS
	Service-Linked Roles
	Service Roles
	Choosing an IAM Role in Amazon EKS

	Amazon EKS Identity-Based Policy Examples
	Policy Best Practices
	Using the Amazon EKS Console
	Allow Users to View Their Own Permissions
	Update a Kubernetes cluster
	List or describe all clusters

	Amazon EKS Service IAM Role
	Check for an Existing Service Role
	Creating the Amazon EKS Service Role

	Amazon EKS Worker Node IAM Role
	Check for an Existing Worker Node Role
	Creating the Amazon EKS Worker Node Role

	Troubleshooting Amazon EKS Identity and Access

	Logging and Monitoring in Amazon EKS
	Compliance Validation for Amazon EKS
	Resilience in Amazon EKS
	Infrastructure Security in Amazon EKS
	Configuration and Vulnerability Analysis in Amazon EKS

	Logging Amazon EKS API Calls with AWS CloudTrail
	Amazon EKS Information in CloudTrail
	Understanding Amazon EKS Log File Entries

	Related Projects
	Management Tools
	eksctl
	AWS Service Operator

	Networking
	Amazon VPC CNI plugin for Kubernetes
	AWS Application Load Balancer (ALB) Ingress Controller for Kubernetes
	ExternalDNS

	Security
	AWS IAM Authenticator

	Storage
	Amazon EFS CSI Driver

	Machine Learning
	Kubeflow

	Auto Scaling
	Cluster Autoscaler
	Escalator

	Monitoring
	Prometheus

	Continuous Integration / Continuous Deployment
	Jenkins X

	Amazon EKS Troubleshooting
	Insufficient Capacity
	aws-iam-authenticator Not Found
	Worker Nodes Fail to Join Cluster
	Unauthorized or Access Denied (kubectl)
	hostname doesn't match
	getsockopt: no route to host
	CNI Log Collection Tool
	Troubleshooting IAM
	AccessDeniedException
	I Am Not Authorized to Perform iam:PassRole
	I Want to View My Access Keys
	I'm an Administrator and Want to Allow Others to Access Amazon EKS
	I Want to Allow People Outside of My AWS Account to Access My Amazon EKS Resources

	Amazon EKS Service Limits
	Document History for Amazon EKS
	AWS Glossary

